General linear group - Wikipedia
文章推薦指數: 80 %
In mathematics, the general linear group of degree n is the set of n×n ; To be more precise, it is necessary to specify what kind of objects may appear in the ...
Generallineargroup
FromWikipedia,thefreeencyclopedia
Jumptonavigation
Jumptosearch
Algebraicstructure→GrouptheoryGrouptheory
Basicnotions
Subgroup
Normalsubgroup
Quotientgroup
(Semi-)directproduct
Grouphomomorphisms
kernel
image
directsum
wreathproduct
simple
finite
infinite
continuous
multiplicative
additive
cyclic
abelian
dihedral
nilpotent
solvable
action
Glossaryofgrouptheory
Listofgrouptheorytopics
Finitegroups
Classificationoffinitesimplegroups
cyclic
alternating
Lietype
sporadic
Cauchy'stheorem
Lagrange'stheorem
Sylowtheorems
Hall'stheorem
p-group
Elementaryabeliangroup
Frobeniusgroup
Schurmultiplier
SymmetricgroupSn
Kleinfour-groupV
DihedralgroupDn
QuaterniongroupQ
DicyclicgroupDicn
DiscretegroupsLattices
Integers(
Z
{\displaystyle\mathbb{Z}}
)
Freegroup
ModulargroupsPSL(2,
Z
{\displaystyle\mathbb{Z}}
)SL(2,
Z
{\displaystyle\mathbb{Z}}
)
Arithmeticgroup
Lattice
Hyperbolicgroup
TopologicalandLiegroups
Solenoid
Circle
GenerallinearGL(n)
SpeciallinearSL(n)
OrthogonalO(n)
EuclideanE(n)
SpecialorthogonalSO(n)
UnitaryU(n)
SpecialunitarySU(n)
SymplecticSp(n)
G2
F4
E6
E7
E8
Lorentz
Poincaré
Conformal
Diffeomorphism
Loop
InfinitedimensionalLiegroupO(∞)SU(∞)Sp(∞)
Algebraicgroups
Linearalgebraicgroup
Reductivegroup
Abelianvariety
Ellipticcurve
vte
Setofnxninvertiblematrices
Liegroups
Classicalgroups
GenerallinearGL(n)
SpeciallinearSL(n)
OrthogonalO(n)
SpecialorthogonalSO(n)
UnitaryU(n)
SpecialunitarySU(n)
SymplecticSp(n)
SimpleLiegroups
Classical
An
Bn
Cn
Dn
Exceptional
G2
F4
E6
E7
E8
OtherLiegroups
Circle
Lorentz
Poincaré
Conformalgroup
Diffeomorphism
Loop
Euclidean
Liealgebras
Liegroup–Liealgebracorrespondence
Exponentialmap
Adjointrepresentation
KillingformIndex
SimpleLiealgebra
SemisimpleLiealgebra
Dynkindiagrams
Cartansubalgebra
RootsystemWeylgroup
RealformComplexification
SplitLiealgebra
CompactLiealgebra
Representationtheory
Liegrouprepresentation
Liealgebrarepresentation
RepresentationtheoryofsemisimpleLiealgebras
RepresentationsofclassicalLiegroups
Theoremofthehighestweight
Borel–Weil–Botttheorem
Liegroupsinphysics
Particlephysicsandrepresentationtheory
Lorentzgrouprepresentations
Poincarégrouprepresentations
Galileangrouprepresentations
Scientists
SophusLie
HenriPoincaré
WilhelmKilling
ÉlieCartan
HermannWeyl
ClaudeChevalley
Harish-Chandra
ArmandBorel
Glossary
TableofLiegroupsvte
Inmathematics,thegenerallineargroupofdegreenisthesetofn×ninvertiblematrices,togetherwiththeoperationofordinarymatrixmultiplication.Thisformsagroup,becausetheproductoftwoinvertiblematricesisagaininvertible,andtheinverseofaninvertiblematrixisinvertible,withidentitymatrixastheidentityelementofthegroup.Thegroupissonamedbecausethecolumns(andalsotherows)ofaninvertiblematrixarelinearlyindependent,hencethevectors/pointstheydefineareingenerallinearposition,andmatricesinthegenerallineargrouptakepointsingenerallinearpositiontopointsingenerallinearposition.
Tobemoreprecise,itisnecessarytospecifywhatkindofobjectsmayappearintheentriesofthematrix.Forexample,thegenerallineargroupoverR(thesetofrealnumbers)isthegroupofn×ninvertiblematricesofrealnumbers,andisdenotedbyGLn(R)orGL(n,R).
Moregenerally,thegenerallineargroupofdegreenoveranyfieldF(suchasthecomplexnumbers),oraringR(suchastheringofintegers),isthesetofn×ninvertiblematriceswithentriesfromF(orR),againwithmatrixmultiplicationasthegroupoperation.[1]TypicalnotationisGLn(F)orGL(n,F),orsimplyGL(n)ifthefieldisunderstood.
Moregenerallystill,thegenerallineargroupofavectorspaceGL(V)istheabstractautomorphismgroup,notnecessarilywrittenasmatrices.
Thespeciallineargroup,writtenSL(n,F)orSLn(F),isthesubgroupofGL(n,F)consistingofmatriceswithadeterminantof1.
ThegroupGL(n,F)anditssubgroupsareoftencalledlineargroupsormatrixgroups(theabstractgroupGL(V)isalineargroupbutnotamatrixgroup).Thesegroupsareimportantinthetheoryofgrouprepresentations,andalsoariseinthestudyofspatialsymmetriesandsymmetriesofvectorspacesingeneral,aswellasthestudyofpolynomials.ThemodulargroupmayberealisedasaquotientofthespeciallineargroupSL(2,Z).
Ifn≥2,thenthegroupGL(n,F)isnotabelian.
Contents
1Generallineargroupofavectorspace
2Intermsofdeterminants
3AsaLiegroup
3.1Realcase
3.2Complexcase
4Overfinitefields
4.1History
5Speciallineargroup
6Othersubgroups
6.1Diagonalsubgroups
6.2Classicalgroups
7Relatedgroupsandmonoids
7.1Projectivelineargroup
7.2Affinegroup
7.3Generalsemilineargroup
7.4Fulllinearmonoid
8Infinitegenerallineargroup
9Seealso
10Notes
11References
12Externallinks
Generallineargroupofavectorspace[edit]
IfVisavectorspaceoverthefieldF,thegenerallineargroupofV,writtenGL(V)orAut(V),isthegroupofallautomorphismsofV,i.e.thesetofallbijectivelineartransformationsV→V,togetherwithfunctionalcompositionasgroupoperation.IfVhasfinitedimensionn,thenGL(V)andGL(n,F)areisomorphic.Theisomorphismisnotcanonical;itdependsonachoiceofbasisinV.Givenabasis(e1,...,en)ofVandanautomorphismTinGL(V),wehavethenforeverybasisvectoreithat
T
(
e
i
)
=
∑
j
=
1
n
a
i
j
e
j
{\displaystyleT(e_{i})=\sum_{j=1}^{n}a_{ij}e_{j}}
forsomeconstantsaijinF;thematrixcorrespondingtoTisthenjustthematrixwithentriesgivenbytheaij.
Inasimilarway,foracommutativeringRthegroupGL(n,R)maybeinterpretedasthegroupofautomorphismsofafreeR-moduleMofrankn.OnecanalsodefineGL(M)foranyR-module,butingeneralthisisnotisomorphictoGL(n,R)(foranyn).
Intermsofdeterminants[edit]
OverafieldF,amatrixisinvertibleifandonlyifitsdeterminantisnonzero.Therefore,analternativedefinitionofGL(n,F)isasthegroupofmatriceswithnonzerodeterminant.
OveracommutativeringR,morecareisneeded:amatrixoverRisinvertibleifandonlyifitsdeterminantisaunitinR,thatis,ifitsdeterminantisinvertibleinR.Therefore,GL(n,R)maybedefinedasthegroupofmatriceswhosedeterminantsareunits.
Overanon-commutativeringR,determinantsarenotatallwellbehaved.Inthiscase,GL(n,R)maybedefinedastheunitgroupofthematrixringM(n,R).
AsaLiegroup[edit]
Realcase[edit]
ThegenerallineargroupGL(n,R)overthefieldofrealnumbersisarealLiegroupofdimensionn2.Toseethis,notethatthesetofalln×nrealmatrices,Mn(R),formsarealvectorspaceofdimensionn2.ThesubsetGL(n,R)consistsofthosematriceswhosedeterminantisnon-zero.Thedeterminantisapolynomialmap,andhenceGL(n,R)isanopenaffinesubvarietyofMn(R)(anon-emptyopensubsetofMn(R)intheZariskitopology),andtherefore[2]
asmoothmanifoldofthesamedimension.
TheLiealgebraofGL(n,R),denoted
g
l
n
,
{\displaystyle{\mathfrak{gl}}_{n},}
consistsofalln×nrealmatriceswiththecommutatorservingastheLiebracket.
Asamanifold,GL(n,R)isnotconnectedbutratherhastwoconnectedcomponents:thematriceswithpositivedeterminantandtheoneswithnegativedeterminant.Theidentitycomponent,denotedbyGL+(n,R),consistsoftherealn×nmatriceswithpositivedeterminant.ThisisalsoaLiegroupofdimensionn2;ithasthesameLiealgebraasGL(n,R).
ThegroupGL(n,R)isalsononcompact.“The”[3]maximalcompactsubgroupofGL(n,R)istheorthogonalgroupO(n),while"the"maximalcompactsubgroupofGL+(n,R)isthespecialorthogonalgroupSO(n).AsforSO(n),thegroupGL+(n,R)isnotsimplyconnected(exceptwhenn=1),butratherhasafundamentalgroupisomorphictoZforn=2orZ2forn>2.
Complexcase[edit]
Thegenerallineargroupoverthefieldofcomplexnumbers,GL(n,C),isacomplexLiegroupofcomplexdimensionn2.AsarealLiegroup(throughrealification)ithasdimension2n2.ThesetofallrealmatricesformsarealLiesubgroup.Thesecorrespondtotheinclusions
GL(n,R)
延伸文章資訊
- 1general linear group - 一般線性群 - 國家教育研究院雙語詞彙
出處/學術領域, 英文詞彙, 中文詞彙. 學術名詞 數學名詞, general linear group, 一般線性群. 學術名詞 數學名詞-兩岸數學名詞, general linear gro...
- 2The linear groups
The set of all invertible transformations (or equivalently of invertible matrices) with determina...
- 3General linear group - Wikipedia
In mathematics, the general linear group of degree n is the set of n×n ; To be more precise, it i...
- 4一般线性群- 维基百科,自由的百科全书
群GL(n, F)和它的子群經常叫做線性群或矩陣群(抽象群GL(V)是線性群但不是矩陣群)。這些群在群表示理論中是重要的,并引發對空間對稱和一般向量空間對稱的研究,還有 ...
- 5General Linear Group -- from Wolfram MathWorld
Given a ring R with identity, the general linear group GL_n(R) is the group of n×n invertible mat...