Open set - Wikipedia

文章推薦指數: 80 %
投票人數:10人

More generally, one defines open sets as the members of a given collection of subsets of a given set, a collection that has the property of containing every ... Openset FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Basicsubsetofatopologicalspace Thisarticleneedsadditionalcitationsforverification.Pleasehelpimprovethisarticlebyaddingcitationstoreliablesources.Unsourcedmaterialmaybechallengedandremoved.Findsources: "Openset" – news ·newspapers ·books ·scholar ·JSTOR(April2012)(Learnhowandwhentoremovethistemplatemessage) Example:Thebluecirclerepresentsthesetofpoints(x,y)satisfyingx2+y2=r2.Thereddiskrepresentsthesetofpoints(x,y)satisfyingx2+y20alwaysbutasεbecomessmallerandsmaller,oneobtainspointsthatapproximatextoahigherandhigherdegreeofaccuracy.Forexample,ifx=0andε=1,thepointswithinεofxarepreciselythepointsoftheinterval(−1,1);thatis,thesetofallrealnumbersbetween−1and1.However,withε=0.5,thepointswithinεofxarepreciselythepointsof(−0.5,0.5).Clearly,thesepointsapproximatextoagreaterdegreeofaccuracythanwhenε=1. Thepreviousdiscussionshows,forthecasex=0,thatonemayapproximatextohigherandhigherdegreesofaccuracybydefiningεtobesmallerandsmaller.Inparticular,setsoftheform(−ε,ε)giveusalotofinformationaboutpointsclosetox=0.Thus,ratherthanspeakingofaconcreteEuclideanmetric,onemayusesetstodescribepointsclosetox.Thisinnovativeideahasfar-reachingconsequences;inparticular,bydefiningdifferentcollectionsofsetscontaining0(distinctfromthesets(−ε,ε)),onemayfinddifferentresultsregardingthedistancebetween0andotherrealnumbers.Forexample,ifweweretodefineRastheonlysuchsetfor"measuringdistance",allpointsarecloseto0sincethereisonlyonepossibledegreeofaccuracyonemayachieveinapproximating0:beingamemberofR.Thus,wefindthatinsomesense,everyrealnumberisdistance0awayfrom0.Itmayhelpinthiscasetothinkofthemeasureasbeingabinarycondition:allthingsinRareequallycloseto0,whileanyitemthatisnotinRisnotcloseto0. Ingeneral,onereferstothefamilyofsetscontaining0,usedtoapproximate0,asaneighborhoodbasis;amemberofthisneighborhoodbasisisreferredtoasanopenset.Infact,onemaygeneralizethesenotionstoanarbitraryset(X);ratherthanjusttherealnumbers.Inthiscase,givenapoint(x)ofthatset,onemaydefineacollectionofsets"around"(thatis,containing)x,usedtoapproximatex.Ofcourse,thiscollectionwouldhavetosatisfycertainproperties(knownasaxioms)forotherwisewemaynothaveawell-definedmethodtomeasuredistance.Forexample,everypointinXshouldapproximatextosomedegreeofaccuracy.ThusXshouldbeinthisfamily.Oncewebegintodefine"smaller"setscontainingx,wetendtoapproximatextoagreaterdegreeofaccuracy.Bearingthisinmind,onemaydefinetheremainingaxiomsthatthefamilyofsetsaboutxisrequiredtosatisfy. Definitions[edit] Severaldefinitionsaregivenhere,inanincreasingorderoftechnicality.Eachoneisaspecialcaseofthenextone. Euclideanspace[edit] Asubset U {\displaystyleU} oftheEuclideann-spaceRnisopenif,foreverypointxin U {\displaystyleU} ,thereexistsapositiverealnumberε(dependingonx)suchthatapointinRnbelongsto U {\displaystyleU} assoonasitsEuclideandistancefromxissmallerthanε.[1]Equivalently,asubset U {\displaystyleU} ofRnisopenifeverypointin U {\displaystyleU} isthecenterofanopenballcontainedin U . {\displaystyleU.} Metricspace[edit] AsubsetUofametricspace(M,d)iscalledopenif,foranypointxinU,thereexistsarealnumberε>0suchthatanypoint y ∈ M {\displaystyley\inM} satisfyingd(x,y)



請為這篇文章評分?