Open Sets | Brilliant Math & Science Wiki
文章推薦指數: 80 %
Open sets are the fundamental building blocks of topology. In the familiar setting of a metric space, the open sets have a natural description, ...
Brilliant
Home
Courses
Today
Signup
Login
Excelinmathandscience.
LoginwithFacebook
LoginwithGoogle
Loginwithemail
JoinusingFacebook
JoinusingGoogle
Joinusingemail
Forgotpassword?
Newuser?
Signup
Existinguser?
Login
SignupwithFacebook
or
Signupmanually
Alreadyhaveanaccount?
Loginhere.
RelevantFor...
Geometry
>
Topology
PatrickCorn,
PeterMacgregor,
and
JiminKhim
contributed
Opensetsarethefundamentalbuildingblocksoftopology.Inthefamiliarsettingofametricspace,theopensetshaveanaturaldescription,whichcanbethoughtofasageneralizationofanopenintervalontherealnumberline.Intuitively,anopensetisasetthatdoesnotcontainitsboundary,inthesamewaythattheendpointsofanintervalarenotcontainedintheinterval.
Thestandarddefinitionofcontinuitycanberestatedquiteconciselyintermsofopensets,andtheeleganceofthisrestatementleadstoapowerfulgeneralizationofthisideatogeneraltopologicalspaces.Inthesameway,manyotherdefinitionsoftopologicalconceptsareformulatedingeneralintermsofopensets.
Thecomplementofanopensetisaclosedset.Manytopologicalpropertiesrelatedtoopensetscanberestatedintermsofclosedsetsaswell.
Contents
FormalDefinition
Properties
Continuity
PropertiesDefinedusingOpenSets
FirstStepsinPoint-setTopology
References
Inallbutthelastsectionofthiswiki,thesettingwillbeageneralmetricspace(X,d).(X,d).(X,d).ThosereaderswhoarenotcompletelycomfortablewithabstractmetricspacesmaythinkofXXXasbeingRn,{\mathbbR}^n,Rn,wheren=2n=2n=2or333forconcreteness,andthedistancefunctiond(x,y)d(x,y)d(x,y)asbeingthestandardEuclideandistancebetweentwopoints.
Anopensetinametricspace(X,d)(X,d)(X,d)isasubsetUUUofXXXwiththefollowingproperty:foranyx∈U,x\inU,x∈U,thereisarealnumberϵ>0\epsilon>0ϵ>0suchthatanypointinXXXthatisadistance0\epsilon>0ϵ>0suchthatB(x,ϵ)B(x,\epsilon)B(x,ϵ)iscompletelycontainedinU.U.U.
SomereferencesuseBϵ(x)B_{\epsilon}(x)Bϵ(x)insteadofB(x,ϵ).B(x,\epsilon).B(x,ϵ).[1]
Sotheintuitionisthatanopensetisasetforwhichanypointinthesethasasmall"halo"arounditthatiscompletelycontainedintheset.Theideaisthatthishalofailstoexistpreciselywhenthepointliesontheboundaryoftheset,sotheconditionthatUUUisopenisthesameassayingthatitdoesn'tcontainanyofitsboundarypoints.Withthecorrectdefinitionofboundary,thisintuitionbecomesatheorem.
TheboundaryofasetSSSinsideametricspaceXXXisthesetofpointsssssuchthatforanyϵ>0,\epsilon>0,ϵ>0,B(s,ϵ)B(s,\epsilon)B(s,ϵ)containsatleastonepointinSSSandatleastonepointnotinS.S.S.
AsubsetUUUofametricspaceisopenifandonlyifitdoesnotcontainanyofitsboundarypoints.
ItisclearthatanopensetUUUcannotcontainanyofitsboundarypointssincethehaloconditionwouldnotapplytothosepoints.Ontheotherhand,ifasetUUUdoesn'tcontainanyofitsboundarypoints,thatisenoughtoshowthatitisopen:foreverypointx∈U,x\inU,x∈U,sincexxxisnotaboundarypoint,thatimpliesthatthereissomeballaroundxxxthatiseithercontainedinUUUorcontainedinthecomplementofU.U.U.ButeveryballaroundxxxcontainsatleastonepointinU,U,U,namelyxxxitself,soitmustbetheformer,andxxxhasahaloinsideU.U.U.□_\square□
Trivialopensets:TheemptysetandtheentiresetXXXarebothopen.Thisisastraightforwardconsequenceofthedefinition.
Unionandintersection:Theunionofanarbitrarycollectionofopensetsisopen.Theintersectionoffinitelymanyopensetsisopen.
Toseethefirststatement,considerthehaloaroundapointintheunion.SinceanyxxxintheunionisinoneoftheopensetsU,U,U,ithasaB(x,ϵ)B(x,\epsilon)B(x,ϵ)arounditcontainedinU,U,U,sothatballiscontainedintheunionaswell.□_\square□
Thesecondstatementisprovedinthebelowexercise.
Theintersectionofinfinitelymanysetsisnotnecessarilydefined
Theproofworks;thestatementistrue
BBBmightnotbecontainedinsideUUU
UUUmightbeempty
BBBmightnotbeaballaroundxxx
LetUαU_{\alpha}Uα(α∈A)(\alpha\inA)(α∈A)beacollectionofopensetsinR2.{\mathbbR}^2.R2.IfAAAisfinite,thentheintersectionU=⋂αUαU=\bigcap\limits_\alphaU_{\alpha}U=α⋂Uαisalsoanopenset.Hereisaproof:
Supposex∈U.x\inU.x∈U.Foreachα∈A,\alpha\inA,α∈A,letBαB_{\alpha}BαbeaballofsomepositiveradiusaroundxxxwhichiscontainedentirelyinsideUα.U_{\alpha}.Uα.ThentheintersectionoftheBαB_{\alpha}BαisaballBBBaroundxxxwhichiscontainedentirelyinsidetheintersection,sotheintersectionisopen.
(((HereaballaroundxxxisasetB(x,r)B(x,r)B(x,r)(rrrapositiverealnumber)consistingofallpointsyyysuchthat∣x−y∣
延伸文章資訊
- 1Open Set -- from Wolfram MathWorld
. In one-space, the open set is an open interval. In two-space, the open set is a disk. In three-...
- 2open set-翻译为中文-例句英语
使用Reverso Context: set to open,在英语-中文情境中翻译"open set"
- 3Open Sets | Brilliant Math & Science Wiki
Open sets are the fundamental building blocks of topology. In the familiar setting of a metric sp...
- 4Open and Closed Sets - Ximera
A set is open if every point in is an interior point. A set is closed if it contains all of its b...
- 51.2. Open Sets and Closed Sets
一個集合中隨便指定那些subsets 是open sets 是沒有意義的. 由Proposition 1.1.5 和. Proposition 1.1.6, 我們知道在實數上的open set ...