What are Neural Networks? | IBM

文章推薦指數: 80 %
投票人數:10人

Neural networks, also known as artificial neural networks (ANNs) or simulated neural networks (SNNs), are a subset of machine learning and are ... Skiptocontent IBMCloudLearnHub WhatareNeuralNetworks? NeuralNetworks By: IBMCloudEducation 17August2020 Artificialintelligence Whatareneuralnetworks? Howdoneuralnetworkswork? Typesofneuralnetworks Neuralnetworksvs.deeplearning Historyofneuralnetworks NeuralnetworksandIBMCloud Jumpto... Whatareneuralnetworks? Howdoneuralnetworkswork? Typesofneuralnetworks Neuralnetworksvs.deeplearning Historyofneuralnetworks NeuralnetworksandIBMCloud menuicon NeuralNetworks Neuralnetworksreflectthebehaviorofthehumanbrain,allowingcomputerprogramstorecognizepatternsandsolvecommonproblemsinthefieldsofAI,machinelearning,anddeeplearning. Whatareneuralnetworks? Neuralnetworks,alsoknownasartificialneuralnetworks(ANNs)orsimulatedneuralnetworks(SNNs),areasubsetofmachinelearningandareattheheartofdeeplearningalgorithms.Theirnameandstructureareinspiredbythehumanbrain,mimickingthewaythatbiologicalneuronssignaltooneanother. Artificialneuralnetworks(ANNs)arecomprisedofanodelayers,containinganinputlayer,oneormorehiddenlayers,andanoutputlayer.Eachnode,orartificialneuron,connectstoanotherandhasanassociatedweightandthreshold.Iftheoutputofanyindividualnodeisabovethespecifiedthresholdvalue,thatnodeisactivated,sendingdatatothenextlayerofthenetwork.Otherwise,nodataispassedalongtothenextlayerofthenetwork. Neuralnetworksrelyontrainingdatatolearnandimprovetheiraccuracyovertime.However,oncetheselearningalgorithmsarefine-tunedforaccuracy,theyarepowerfultoolsincomputerscienceandartificialintelligence,allowingustoclassifyandclusterdataatahighvelocity.Tasksinspeechrecognitionorimagerecognitioncantakeminutesversushourswhencomparedtothemanualidentificationbyhumanexperts.Oneofthemostwell-knownneuralnetworksisGoogle’ssearchalgorithm. Howdoneuralnetworkswork? Thinkofeachindividualnodeasitsownlinearregressionmodel,composedofinputdata,weights,abias(orthreshold),andanoutput.Theformulawouldlooksomethinglikethis: ∑wixi+bias=w1x1+w2x2+w3x3+bias output=f(x)=1if∑w1x1+b>=0;0if∑w1x1+b<0 Onceaninputlayerisdetermined,weightsareassigned.Theseweightshelpdeterminetheimportanceofanygivenvariable,withlargeronescontributingmoresignificantlytotheoutputcomparedtootherinputs.Allinputsarethenmultipliedbytheirrespectiveweightsandthensummed.Afterward,theoutputispassedthroughanactivationfunction,whichdeterminestheoutput.Ifthatoutputexceedsagiventhreshold,it“fires”(oractivates)thenode,passingdatatothenextlayerinthenetwork.Thisresultsintheoutputofonenodebecomingintheinputofthenextnode.Thisprocessofpassingdatafromonelayertothenextlayerdefinesthisneuralnetworkasafeedforwardnetwork. Let’sbreakdownwhatonesinglenodemightlooklikeusingbinaryvalues.Wecanapplythisconcepttoamoretangibleexample,likewhetheryoushouldgosurfing(Yes:1,No:0).Thedecisiontogoornottogoisourpredictedoutcome,ory-hat.Let’sassumethattherearethreefactorsinfluencingyourdecision-making: Arethewavesgood?(Yes:1,No:0) Istheline-upempty?(Yes:1,No:0) Hastherebeenarecentsharkattack?(Yes:0,No:1) Then,let’sassumethefollowing,givingusthefollowinginputs: X1=1,sincethewavesarepumping X2=0,sincethecrowdsareout X3=1,sincetherehasn’tbeenarecentsharkattack Now,weneedtoassignsomeweightstodetermineimportance.Largerweightssignifythatparticularvariablesareofgreaterimportancetothedecisionoroutcome. W1=5,sincelargeswellsdon’tcomearoundoften W2=2,sinceyou’reusedtothecrowds W3=4,sinceyouhaveafearofsharks Finally,we’llalsoassumeathresholdvalueof3,whichwouldtranslatetoabiasvalueof–3.Withallthevariousinputs,wecanstarttopluginvaluesintotheformulatogetthedesiredoutput. Y-hat=(1*5)+(0*2)+(1*4)–3=6 Ifweusetheactivationfunctionfromthebeginningofthissection,wecandeterminethattheoutputofthisnodewouldbe1,since6isgreaterthan0.Inthisinstance,youwouldgosurfing;butifweadjusttheweightsorthethreshold,wecanachievedifferentoutcomesfromthemodel.Whenweobserveonedecision,likeintheaboveexample,wecanseehowaneuralnetworkcouldmakeincreasinglycomplexdecisionsdependingontheoutputofpreviousdecisionsorlayers. Intheexampleabove,weusedperceptronstoillustratesomeofthemathematicsatplayhere,butneuralnetworksleveragesigmoidneurons,whicharedistinguishedbyhavingvaluesbetween0and1.Sinceneuralnetworksbehavesimilarlytodecisiontrees,cascadingdatafromonenodetoanother,havingxvaluesbetween0and1willreducetheimpactofanygivenchangeofasinglevariableontheoutputofanygivennode,andsubsequently,theoutputoftheneuralnetwork. Aswestarttothinkaboutmorepracticalusecasesforneuralnetworks,likeimagerecognitionorclassification,we’llleveragesupervisedlearning,orlabeleddatasets,totrainthealgorithm.Aswetrainthemodel,we’llwanttoevaluateitsaccuracyusingacost(orloss)function.Thisisalsocommonlyreferredtoasthemeansquarederror(MSE).Intheequationbelow, irepresentstheindexofthesample, y-hatisthepredictedoutcome, yistheactualvalue,and misthenumberofsamples. 𝐶𝑜𝑠𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛=𝑀𝑆𝐸=1/2𝑚∑129_(𝑖=1)^𝑚▒(𝑦 ̂^((𝑖))−𝑦^((𝑖)))^2 Ultimately,thegoalistominimizeourcostfunctiontoensurecorrectnessoffitforanygivenobservation.Asthemodeladjustsitsweightsandbias,itusesthecostfunctionandreinforcementlearningtoreachthepointofconvergence,orthelocalminimum.Theprocessinwhichthealgorithmadjustsitsweightsisthroughgradientdescent,allowingthemodeltodeterminethedirectiontotaketoreduceerrors(orminimizethecostfunction).Witheachtrainingexample,theparametersofthemodeladjusttograduallyconvergeattheminimum.  SeethisIBMDeveloperarticleforadeeperexplanationofthequantitativeconceptsinvolvedinneuralnetworks. Mostdeepneuralnetworksarefeedforward,meaningtheyflowinonedirectiononly,frominputtooutput.However,youcanalsotrainyourmodelthroughbackpropagation;thatis,moveintheoppositedirectionfromoutputtoinput.Backpropagationallowsustocalculateandattributetheerrorassociatedwitheachneuron,allowingustoadjustandfittheparametersofthemodel(s)appropriately. Typesofneuralnetworks Neuralnetworkscanbeclassifiedintodifferenttypes,whichareusedfordifferentpurposes.Whilethisisn’tacomprehensivelistoftypes,thebelowwouldberepresentativeofthemostcommontypesofneuralnetworksthatyou’llcomeacrossforitscommonusecases: Theperceptronistheoldestneuralnetwork,createdbyFrankRosenblattin1958.Ithasasingleneuronandisthesimplestformofaneuralnetwork: Feedforwardneuralnetworks,ormulti-layerperceptrons(MLPs),arewhatwe’veprimarilybeenfocusingonwithinthisarticle.Theyarecomprisedofaninputlayer,ahiddenlayerorlayers,andanoutputlayer.WhiletheseneuralnetworksarealsocommonlyreferredtoasMLPs,it’simportanttonotethattheyareactuallycomprisedofsigmoidneurons,notperceptrons,asmostreal-worldproblemsarenonlinear.Datausuallyisfedintothesemodelstotrainthem,andtheyarethefoundationforcomputervision,naturallanguageprocessing,andotherneuralnetworks. Convolutionalneuralnetworks(CNNs)aresimilartofeedforwardnetworks,butthey’reusuallyutilizedforimagerecognition,patternrecognition,and/orcomputervision.Thesenetworksharnessprinciplesfromlinearalgebra,particularlymatrixmultiplication,toidentifypatternswithinanimage. Recurrentneuralnetworks(RNNs)areidentifiedbytheirfeedbackloops.Theselearningalgorithmsareprimarilyleveragedwhenusingtime-seriesdatatomakepredictionsaboutfutureoutcomes,suchasstockmarketpredictionsorsalesforecasting. Neuralnetworksvs.deeplearning DeepLearningandneuralnetworkstendtobeusedinterchangeablyinconversation,whichcanbeconfusing.Asaresult,it’sworthnotingthatthe“deep”indeeplearningisjustreferringtothedepthoflayersinaneuralnetwork.Aneuralnetworkthatconsistsofmorethanthreelayers—whichwouldbeinclusiveoftheinputsandtheoutput—canbeconsideredadeeplearningalgorithm.Aneuralnetworkthatonlyhastwoorthreelayersisjustabasicneuralnetwork. Tolearnmoreaboutthedifferencesbetweenneuralnetworksandotherformsofartificialintelligence, likemachinelearning,pleasereadtheblogpost“AIvs.MachineLearningvs.DeepLearningvs.NeuralNetworks:What’stheDifference?” Historyofneuralnetworks Thehistoryofneuralnetworksislongerthanmostpeoplethink.Whiletheideaof“amachinethatthinks”canbetracedtotheAncientGreeks,we’llfocusonthekeyeventsthatledtotheevolutionofthinkingaroundneuralnetworks,whichhasebbedandflowedinpopularityovertheyears: 1943:WarrenS.McCullochandWalterPittspublished“Alogicalcalculusoftheideasimmanentinnervousactivity(PDF,1MB)(linkresidesoutsideIBM)”Thisresearchsoughttounderstandhowthehumanbraincouldproducecomplexpatternsthroughconnectedbraincells,orneurons.OneofthemainideasthatcameoutofthisworkwasthecomparisonofneuronswithabinarythresholdtoBooleanlogic(i.e.,0/1ortrue/falsestatements).   1958:FrankRosenblattiscreditedwiththedevelopmentoftheperceptron,documentedinhisresearch,“ThePerceptron:AProbabilisticModelforInformationStorageandOrganizationintheBrain”(PDF,1.6MB)(linkresidesoutsideIBM).HetakesMcCullochandPitt’sworkastepfurtherbyintroducingweightstotheequation.LeveraginganIBM704,Rosenblattwasabletogetacomputertolearnhowtodistinguishcardsmarkedontheleftvs.cardsmarkedontheright. 1974:Whilenumerousresearcherscontributedtotheideaofbackpropagation,PaulWerboswasthefirstpersonintheUStonoteitsapplicationwithinneuralnetworkswithinhisPhDthesis(PDF,8.1MB)(linkresidesoutsideIBM). 1989:YannLeCunpublishedapaper(PDF,5.7MB)(linkresidesoutsideIBM)illustratinghowtheuseofconstraintsinbackpropagationanditsintegrationintotheneuralnetworkarchitecturecanbeusedtotrainalgorithms.Thisresearchsuccessfullyleveragedaneuralnetworktorecognizehand-writtenzipcodedigitsprovidedbytheU.S.PostalService. NeuralnetworksandIBMCloud Fordecadesnow,IBMhasbeenapioneerinthedevelopmentofAItechnologiesandneuralnetworks,highlightedbythedevelopmentandevolutionofIBMWatson.WatsonisnowatrustedsolutionforenterpriseslookingtoapplyadvancednaturallanguageprocessinganddeeplearningtechniquestotheirsystemsusingaproventieredapproachtoAIadoptionandimplementation. WatsonusestheApacheUnstructuredInformationManagementArchitecture(UIMA)frameworkandIBM’sDeepQAsoftwaretomakepowerfuldeeplearningcapabilitiesavailabletoapplications.UtilizingtoolslikeIBMWatsonStudio,yourenterprisecanseamlesslybringopensourceAIprojectsintoproductionwhiledeployingandrunningmodelsonanycloud. Formoreinformationonhowtogetstartedwithdeeplearningtechnology,exploreIBMWatsonStudio andtheDeepLearningservice. SignupforanIBMidandcreateyourIBMCloudaccount. ArtificialIntelligenceebook Downloadtheebook Featuredproducts WatsonStudio WatsonMachineLearningAccelerator Relatedlinks Linearregression Predictiveanalytics



請為這篇文章評分?