Neural Network Definition - Investopedia
文章推薦指數: 80 %
A neural network is a series of algorithms that endeavors to recognize underlying relationships in a set of data through a process that mimics the way the ... AlgorithmicTrading AutomatedTrading WhatIsaNeuralNetwork? Aneuralnetworkisaseriesofalgorithmsthatendeavorstorecognizeunderlyingrelationshipsinasetofdatathroughaprocessthatmimicsthewaythehumanbrainoperates.Inthissense,neuralnetworksrefertosystemsofneurons,eitherorganicorartificialinnature. Neuralnetworkscanadapttochanginginput;sothenetworkgeneratesthebestpossibleresultwithoutneedingtoredesigntheoutputcriteria.Theconceptofneuralnetworks,whichhasitsrootsinartificialintelligence,isswiftlygainingpopularityinthedevelopmentoftradingsystems. ImagebySabrinaJiang©Investopedia 2020 KeyTakeaways Neuralnetworksareaseriesofalgorithmsthatmimictheoperationsofananimalbraintorecognizerelationshipsbetweenvastamountsofdata.Assuch,theytendtoresembletheconnectionsofneuronsandsynapsesfoundinthebrain.Theyareusedinavarietyofapplicationsinfinancialservices,fromforecastingandmarketingresearchtofrauddetectionandriskassessment.Neuralnetworkswithseveralprocesslayersareknownas"deep"networksandareusedfordeeplearningalgorithmsThesuccessofneuralnetworksforstockmarketpricepredictionvaries. BasicsofNeuralNetworks Neuralnetworks,intheworldoffinance, assistinthedevelopmentofsuchprocessesastime-seriesforecasting,algorithmictrading,securitiesclassification,creditriskmodeling,andconstructingproprietaryindicatorsandpricederivatives. Aneuralnetworkworkssimilarlytothehumanbrain’sneuralnetwork.A“neuron”inaneuralnetworkisamathematicalfunctionthatcollectsandclassifiesinformationaccordingtoaspecificarchitecture.Thenetworkbearsastrongresemblancetostatisticalmethodssuchascurvefittingandregressionanalysis. Aneuralnetworkcontainslayersofinterconnectednodes.Eachnodeisaknownasperceptronandissimilartoamultiplelinearregression.Theperceptronfeedsthesignalproducedbyamultiplelinearregressionintoanactivationfunctionthatmaybenonlinear. Multi-LayeredPerceptron Inamulti-layeredperceptron(MLP),perceptronsarearrangedininterconnectedlayers.Theinputlayercollectsinputpatterns.Theoutputlayerhasclassificationsoroutputsignalstowhichinputpatternsmaymap.Forinstance,thepatternsmaycomprisealistofquantitiesfortechnicalindicatorsaboutasecurity;potentialoutputscouldbe“buy,”“hold”or“sell.” Hiddenlayersfine-tunetheinputweightingsuntiltheneuralnetwork’smarginoferrorisminimal.Itishypothesizedthathiddenlayersextrapolatesalientfeaturesintheinputdatathathavepredictivepowerregardingtheoutputs.Thisdescribesfeatureextraction,whichaccomplishesautilitysimilartostatisticaltechniquessuchasprincipalcomponentanalysis. ApplicationofNeuralNetworks Neuralnetworksarebroadlyused,withapplicationsforfinancialoperations,enterpriseplanning,trading,businessanalytics,andproductmaintenance.Neuralnetworkshavealsogainedwidespreadadoptioninbusinessapplicationssuchasforecastingandmarketingresearchsolutions,frauddetection,andriskassessment. Aneuralnetworkevaluatespricedataandunearthsopportunitiesformakingtradedecisionsbasedonthedataanalysis.Thenetworkscandistinguishsubtlenonlinearinterdependenciesandpatternsothermethodsoftechnicalanalysiscannot.Accordingtoresearch,theaccuracyofneuralnetworksinmakingpricepredictionsforstocksdiffers.Somemodelspredictthecorrectstockprices50to60percentofthetime,whileothersareaccuratein70percentofallinstances.Somehavepositedthata10percentimprovementinefficiencyisallaninvestorcanaskforfromaneuralnetwork. Therewillalwaysbedatasetsandtaskclassesthatabetteranalyzedbyusingpreviouslydevelopedalgorithms.Itisnotsomuchthealgorithmthatmatters;itisthewell-preparedinputdataonthetargetedindicatorthatultimatelydeterminesthelevelofsuccessofaneuralnetwork. WhatAretheComponentsofaNeuralNetwork? Therearethreemaincomponents:aninputlater,aprocessinglayer,andanoutputlayer.Theinputsmaybeweightedbasedonvariouscriteria.Withintheprocessinglayer,whichishiddenfromview,therearenodesandconnectionsbetweenthesenodes,meanttobeanalogoustotheneuronsandsynapsesinananimalbrain. WhatIsaConvolutionalNeuralNetwork? Aconvolutionalneuralnetworkisoneadaptedforanalyzingandidentifyingvisualdatasuchasdigitalimagesorphotographs. WhatIsaRecurrentNeuralNetwork? Arecurrentneuralnetworkisoneadaptedforanalyzingtimeseriesdata,eventhistory,ortemporalordering. WhatIsaDeepNeuralNetwork? Alsoknownasadeeplearningnetwork,adeepneuralnetwork,atitsmostbasic,isonethatinvolvestwoormoreprocessinglayers. ArticleSources Investopediarequireswriterstouseprimarysourcestosupporttheirwork.Theseincludewhitepapers,governmentdata,originalreporting,andinterviewswithindustryexperts.Wealsoreferenceoriginalresearchfromotherreputablepublisherswhereappropriate.Youcanlearnmoreaboutthestandardswefollowinproducingaccurate,unbiasedcontentinour editorialpolicy. SpringerLink."AnInnovativeNeuralNetworkApproachforStockMarketPrediction."AccessedSept.23,2020. CompareAccounts AdvertiserDisclosure × TheoffersthatappearinthistablearefrompartnershipsfromwhichInvestopediareceivescompensation.Thiscompensationmayimpacthowandwherelistingsappear.Investopediadoesnotincludealloffersavailableinthemarketplace. Provider Name Description RelatedTerms ReadingIntoPredictiveModeling Predictivemodelingistheprocessofusingknownresultstocreate,process,andvalidateamodelthatcanbeusedtoforecastfutureoutcomes. more PredictiveAnalyticsDefinition Predictiveanalyticsistheuseofstatisticsandmodelingtechniquestodeterminefutureperformancebasedoncurrentandhistoricaldata. more TechnicalSkillsDefinition Technicalskillsaretheabilitiesandknowledgeneededtocompletepracticaltasks.Whichtechnicalskillsshouldyouputonaresume?Weanswerthathere. more WhatIsFuzzyLogic? Fuzzylogicisamathematicallogicthatsolvesproblemswithanopen,imprecisedataspectrum.Readhowtoobtainaccurateconclusionswithfuzzylogic. more HowtheResidualSumofSquares(RSS)Works Theresidualsumofsquares(RSS)isastatisticaltechniqueusedtomeasurethevarianceinadatasetthatisnotexplainedbytheregressionmodel. more WhatIsNonlinearity? Optionshaveahighdegreeofnonlinearity,whichmaymakethemseemunpredictable.Learnaboutnonlinearityandhowtomanageyouroptionstradingrisk. more PartnerLinks RelatedArticles Sectors&Industries NeuralNetworks:ForecastingProfits High-FrequencyTrading(HFT) NewAlternativestoHigh-FrequencyTrading Degrees&Certifications DataAnalyst:CareerPathandQualifications Macroeconomics HowDoCompaniesForecastOilPrices? TradingStrategies HowStatisticalArbitrageCanLeadtoBigProfits AutomatedTrading CodingYourOwnAlgo-TradingRobot
延伸文章資訊
- 1人工神經網路- 維基百科,自由的百科全書
人工神經網路(英語:Artificial Neural Network,ANN),簡稱神經網路(Neural Network,NN)或類神經網路,在機器學習和認知科學領域,是一種模仿生物神經網路...
- 2Day 03:Neural Network 的概念探討 - iT 邦幫忙
Neural Network 是參考生物神經系統的結構,神經元(Neuron)之間互相連結,由外部神經元接收信號,再層層傳導至其他神經元,最後作出反應的過程。 · 將神經 ...
- 3人工神經網絡- 維基百科,自由嘅百科全書
... neural network,簡稱「ANN」)係指一啲模仿生物神經網絡(即係動物嘅中樞神經系統,尤其 ... 一個人工神經網絡由大量嘅人工神經細胞(artificial neuron)組成。
- 4神經網路Neural Networks - 資料科學・機器・人
很多讀者可能會感到驚訝,神經網路(Neural Networks)的運作原理其實非常簡單,一點也不難理解。我將為各位簡單說明如何利用深度學習(Deep Learning)和一台簡易相機 ...
- 54-1 Introduction to Neural Network - Coursera