Interleaflet Coupling, Pinning, and Leaflet Asymmetry—Major ...
文章推薦指數: 80 %
The plasma membrane has a highly asymmetric distribution of lipids and contains dynamic nanodomains many of which are liquid entities ... ThisarticleispartoftheResearchTopic Molecularorganisationofmembranes:wherebiologymeetsbiophysics Viewall 12 Articles Articles MarekCebecauer J.HeyrovskyInstituteofPhysicalChemistry(ASCR),Czechia ErdincSezgin KarolinskaInstitutet(KI),Sweden HectorMartinez-Seara InstituteofOrganicChemistryandBiochemistry,AcademyofSciencesoftheCzechRepublic(ASCR),Czechia Theeditorandreviewers'affiliationsarethelatestprovidedontheirLoopresearchprofilesandmaynotreflecttheirsituationatthetimeofreview. Abstract MembraneAsymmetry LipidAsymmetryinthePlasmaMembrane TheRegistrationofMembraneNanodomainsintheTwoLeaflets SizeofDomains CrossingtheMid-Line—APrivilegeofAsymmetricLipidswithOneLongAcylchain ImperfectioninLipidAsymmetryandDomainRegistration Pinning Outlook AuthorContributions ConflictofInterestStatement Acknowledgments References SuggestaResearchTopic> DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) Supplementary Material Exportcitation EndNote ReferenceManager SimpleTEXTfile BibTex totalviews ViewArticleImpact SuggestaResearchTopic> SHAREON OpenSupplementalData REVIEWarticle Front.CellDev.Biol.,10January2017 |https://doi.org/10.3389/fcell.2016.00155 InterleafletCoupling,Pinning,andLeafletAsymmetry—MajorPlayersinPlasmaMembraneNanodomainFormation ToyoshiFujimoto1andIngelaParmryd2* 1DepartmentofAnatomyandMolecularCellBiology,NagoyaUniversityGraduateSchoolofMedicine,Nagoya,Japan 2ScienceforLifeLaboratory,MedicalCellBiology,UppsalaUniversity,Uppsala,Sweden Theplasmamembranehasahighlyasymmetricdistributionoflipidsandcontainsdynamicnanodomainsmanyofwhichareliquidentitiessurroundedbyasecond,slightlydifferent,liquidenvironment.Contributingtothedynamicsisacontinuousrepartitioningofcomponentsbetweenthetwotypesofliquidsandtransientlinksbetweenlipidsandproteins,bothtoextracellularmatrixandcytoplasmiccomponents,thattemporarilypinmembraneconstituents.Thismakeplasmamembranenanodomainsexceptionallychallengingtostudyandmuchofwhatisknownaboutmembranedomainshasbeendeducedfromstudiesonmodelmembranesatequilibrium.However,livingcellsarebydefinitionnotatequilibriumandlipidsaredistributedasymmetricallywithinositolphospholipids,phosphatidylethanolaminesandphosphatidylserinesconfinedmostlytotheinnerleafletandglyco-andsphingolipidstotheouterleaflet.Moreover,eachphospholipidgroupencompassesawealthofspecieswithdifferentacylchaincombinationswhoselateraldistributionisheterogeneous.Itisbecomingincreasinglyclearthatasymmetryandpinningplayimportantrolesinplasmamembranenanodomainformationandcouplingbetweenthetwolipidmonolayers.Howasymmetry,pinning,andinterdigitationcontributetotheplasmamembraneorganizationisonlybeginningtobeunraveledandherewediscusstheirrolesandinterdependence. MembraneAsymmetry Alreadyintheearly1970'sitwasknownthatthehumanerythrocytemembranedisplaysleafletasymmetryinthephospholipidcomposition(Bretscher,1972;Verkleijetal.,1973)withmostphosphatidylcholine(PC)andsphingomyelin(SM)presentintheouterleaflet,whereasphosphatidylserine(PS),phosphatidylethanolamine(PE),andphosphatidylinositol(PI)areintheinnerleaflet(Figure1).Thisarchitecturehasoftenbeenregardedasaprototypeoftheplasmamembraneofmammaliancells. FIGURE1 Figure1.Phospholipidasymmetryintheerythrocytemembrane.Thecolorsindicatetheasymmetricdistributionofphospholipids.Therangeinpercentagesindicatestheamountspresentinthepreferredleaflet[allbuttheGSLs(Lingwood,2011)fromTable1fromZachowski(1993)].Notethatmostphospholipidsarealsolikelytobepresentinthelessfavoredleaflet,albeitinasmallamounts.Cholesterolisalsoamajorcomponentofthemembranebutisnotshown. Inrecentyearsmethodstoproduceasymmetricphospholipidmembraneshavebeendevelopedandtogetherwithsophisticatedmolecularsimulationtechniques,theyhaveprovidedcompellingevidencethatlipidsinoneleafletofthemembranecaninfluencemoleculardiffusionanddomainformationoflipidsintheotherleafletwithoutproteinintervention,i.e.,interleafletcoupling.Inthesestudies,modelmembraneswithperfectphospholipiddistributionasymmetryareoftenused,forexamplewithPCand/orSMinoneoftheleafletsandPS,PE,and/orPIconfinedtotheoppositeleaflet.However,innaturalmembranes,nophospholipidspeciesislikelytodistributeexclusivelytoonlyoneleafletandalsosmall“imperfections”inasymmetrymighthaveasignificantimpactinsomemembranepropertiesaswediscussbelow. Tobetterunderstandthepropertiesofnaturalmembranes,itisimportanttoestablishthedegreeofasymmetricphospholipiddistribution.Wewillthereforesummarizewhatisknownaboutthedistributionofindividuallipidsintheplasmamembraneleafletsofmammaliancells.Herewehavetoemphasizetwopoints.Thefirstisthedivergencebetweencelltypes:themostwell-studiedhumanerythrocytemembraneandtheplasmamembraneofothercells.Thesecondisthedegreeofasymmetry:anasymmetricdistributionofaparticularlipidmeansthatthedistributionbetweenthetwoleafletsisnot50:50.Itcouldbe60:40,butitcouldalsobenearly100:0,andthedistributionoranychangethereofislikelytoinfluencemembraneproperties.Usingthelipiddistributiondatafromnaturalmembranes,weshouldbeabletogeneraterealisticmodelstoexplaintheroleoftheasymmetriclipiddistributionincellularprocessestakingplaceinmembranes. LipidAsymmetryinthePlasmaMembrane Phosphatidylcholine PCinthehumanerythrocytemembraneispredominantlyfoundintheouterleaflet,andtheproportionofPCintheouterleafletwasestimatedtobe76–78%(Verkleijetal.,1973;vanMeeretal.,1981).Thislevelofasymmetrydoesnotappeartoexistinothercelltypesoreveninerythrocytesofotherspecies.Forexample,theproportionofPCintheouterleafletofmouse,rat,andmonkeyerythrocytemembraneswasreportedtobe50%(Rawyleretal.,1985),62–63%(Renooijetal.,1976;CrainandZilversmit,1980),and67%(VanderSchaftetal.,1987).ThePCdistributionwasexaminedbybiochemicalmethods,utilizingcovalentbindingofmembrane-impermeablereagents(GordeskyandMarinetti,1973;WhiteleyandBerg,1974),enzymaticdigestion(Verkleijetal.,1973),oruseofphospholipidexchangeproteins(Barsukovetal.,1976),butthesemethodsarenotappropriateforaccuratemeasurementofasymmetry(OpdenKamp,1979;Etemadi,1980;Zachowski,1993).Nevertheless,thedivergentresultsfromerythrocytesofdifferentspecieswereobtainedbysimilarmethods,suggestingthatthePCdistributioninnon-humanerythrocytesmaynotshowsuchextremeasymmetryacrosstheplasmamembraneleafletasthatfoundinhumanerythrocytes. Morerecently,freeze-fracturereplicalabelingEMutilizingmetaboliclabelingwithaclickablecholineanalogindicatedthatPCexistsinequivalentamountsinbothleafletsoftheplasmamembraneincellsotherthanerythrocytes(Iyoshietal.,2014).Incontrast,studiesapplyingananti-PCantibodytofreeze-fracturereplicasshowedpredominantlabelingintheouterleaflet,butthecaptureratiowasextremelylow(Fujimotoetal.,1996;Murateetal.,2015),atleastpartiallybecausetheantibodypreferentiallydetectedonlysomePCsubpopulations(Nametal.,1990). AlthoughtheexactratioofPCinthetwoleafletsisnotclear,thebulkofthedatasuggeststhatmorethan20%ofPCcouldexistintheinnerleafletoftheerythrocytemembrane.Intheplasmamembraneofothercelltypes,theproportionofPCintheinnerleafletmaybeevenhigher. Aminophospholipids BothPSandPEwereinitiallythoughttobeconfinedtotheinnerleafletofthehumanerythrocytemembrane,andasimilarasymmetrywasassumedtobeageneralpropertyofallplasmamembranes.LackofcellsurfacebindingofPS-specificannexinV(Koopmanetal.,1994)andPE-specificRo09-0198(Emotoetal.,1996)innormalinterphasecellsfurtherstrengthenedtheassumption.However,theresultwithannexinVandRo09-0198onlysuggestedthatthelevelofPSandPEintheouterleafletisbelowathresholdlevel,andcannotnecessarilybeequatedwiththeircompleteabsence.Actually,biochemicalstudiesindicatedthatasizablefractionofPSandPEexistsintheouterleaflet,andmoreover,thattheproportionintheouterleafletishighlyvariableamongdifferentcelltypes,0–44%(PS)and0–73%(PE)(itisgenerallyhigherforPEthanPS;seetablesinDevaux,1991;Zachowski,1993forsummaryofresults).Althoughthemethodsusedinthosestudiesmaynotbeaccurateorquantitative(OpdenKamp,1979;Etemadi,1980;Zachowski,1993),itisdifficulttoexplainthedivergentresultsbythemethodologicalinsufficiencyalone.Wepresumethatnon-negligibleamountsofPSandPEdistributetotheouterleafletoftheplasmamembraneinmostcells. PhosphatidylinositolandPhosphoinositides PIisalsoassumedtoexistlargelyintheinnerleafletoftheplasmamembrane,butbiochemicalstudiesindicatedthatPImayalsobepresentintheouterleafletinthehumanerythrocytemembraneaswellasintheouterplasmamembraneleafletofseveralnucleatedcelltypes(Rawyleretal.,1985;Bütikoferetal.,1990;Gascardetal.,1991).ThelackofaPIspecificprobemakesitdifficulttoconfirmtheaboveresultmicroscopically,butseveralphosphoinositidescouldbelabeledatthecellsurfacebyapplyingmembrane-impermeableprobes(Gascardetal.,1991;Kaleetal.,2010).Thissuggeststhatinositolphospholipidsarepresentintheouterleafletoftheplasmamembraneasphysiologicalconstituents. Sphingomyelin TheproportionofSMintheouterleafletofthehumanerythrocytemembranewasreportedtobe80–85%(Verkleijetal.,1973)and79%(vanMeeretal.,1981).IncontrasttoPC,erythrocytesofotherspeciesalsoshowedasimilarorevenhigherfractionofSMintheouterleaflet(Renooijetal.,1976;CrainandZilversmit,1980;Rawyleretal.,1985;VanderSchaftetal.,1987).Alsoinothercelltypes,theproportionofSMintheouterleafletwasgenerallyshowntobehigherthanthatofPC(seetablesinDevaux,1991;Zachowski,1993forsummaryofresults).Nevertheless,itisnotablethatasignificantproportionofSM,e.g.,10–20%,isfoundintheinnerleafletwhenbiochemicalmethodsareused.Inaddition,freeze-fracturereplicalabelingEMalsoshowedlabelingoftheinnerleafletwithanSM-bindingtoxin,lysenin(Murateetal.,2015).Quantitativityandspecificityofthelyseninlabelinginfreeze-fracturereplicaneedstoberigorouslytested,buttheresultisconsistentwiththepresenceofSMintheinnerleafletoftheplasmamembrane. Glycosphingolipids Glycosphingolipids(GSLs)aregenerallybelievedtoexistonlyintheouterleaflet.GlucosylceramideandgalactosylceramidestarttheirsynthesisatthecytoplasmicsideoftheERandtheGolgi,andarethenflippedtotheluminalsideforfurtherglycosylations.ComplexGSLslikegangliosidesarenotlikelytoflipbacktothecytoplasmicleafletbecauseoftheirbulkyhydrophilicheadgroup,butshortcarbohydratechainGSLscantranslocateacrossthemembrane(Butonetal.,2002).Therefore,thepresenceofasmallamountofGSLintheinnerleafletoftheplasmamembranecannotbeexcluded. Cholesterol Despitethedevelopmentofnewmethodologies(Friszetal.,2013;Solankoetal.,2015),neitherthelateraldistributionofcholesterolnoritsdistributionacrossthetwoplasmamembraneleafletsiswell-characterized(Marquardtetal.,2015).Apolyeneantibiotic,filipin,hasbeenusedfrequentlytovisualizeendogenouscholesteroldistributionbothbyfluorescencemicroscopyandEM.FilipinhasbeenreportedtoprobealsoGM1(Arthuretal.,2011),butgiventhat5–7mol%cholesterolrequiredforfilipinvisualizationinmembranes(Behnkeetal.,1984)andthescarcityofGM1thisshouldnotbeaproblemincellstaining.However,membranedeformationcausedbyfilipin-cholesterolcomplexformationdoesnotindicateinwhichleafletofthemembranecholesterolexists.Asanalternative,analogueswithvariousfluorescenttagshavebeenused,butnoneofthemgivesatisfactoryresults,becausethepresenceoflargetagssignificantlychangesthemolecularpropertyofcholesterol,inparticularthequickflip-flopbetweenthetwoleaflets(KlymchenkoandKreder,2014;Sezginetal.,2016). Dehydroergosterol,thatisverysimilartocholesterolinthemolecularstructure,isconsideredtobethebestfluorescentanalog.Itsopticalpropertiesarenotfavorableforimaging,butastudyusingdehydroergosterolshoweditsenrichmentintheinnerleaflet(Mondaletal.,2009),whichisinaccordancewiththeoreticalconsiderations(GiangandSchick,2014;Falkovichetal.,2016).Incontrast,preferentialdistributionofcholesteroltotheouterleafletofthehumanerythrocytemembranewasshownbybiochemicalanalysisofaphospholipidmonolayerobtainedbyfreeze-fracture(Fisher,1976).Itisnotclearwhetherthedisparitybetweenthetwostudiesisderivedfromdifferencebetweenthecelltypesexamined,methodology,orboth. AcylChains Theacylchaincompositionofphospholipidsisthoughttobeacriticalfactortodeterminepropertiesofindividualmembraneleaflets,butourknowledgeofthisaspectisevenlesscompletethanthatoftheheadgroups.Classicalworkusingthinlayerchromatographyandphospholipasehydrolysissuggestedthattheproportionofsaturatedandunsaturatedacylchainsishighlyvariablebetweendifferentphospholipidspeciesandalsobetweendifferenttissues(YabuuchiandO'Brien,1968;WoodandHarlow,1969).Tandemmassspectrometricanalysisconfirmedthetissue-to-tissuevariation,butitalsoindicatedthatPS,PE,andPItendtohaveahigherproportionofpolyunsaturatedacylchainsthanPC,whichisenrichedwithmono-anddi-unsaturatedacylchains(Hicksetal.,2006). Itislargelyunknownhowphospholipidswithdifferentacylchaincompositionsdistributetwo-dimensionallyintheplasmamembrane.Notably,PCofparticularacylchaincompositionswereshowntohaveheterogeneousdistributionsalongtheneuronalaxonbothwhenassessedbyimagingmassspectroscopy(Yangetal.,2012)andbyuseofauniquemonoclonalantibody(Kugeetal.,2014).Butwiththesemethods,itisnoteasytodistinguishacylchainsinoneleafletofamembranefromanother.Freeze-fracturemaybeoneofafewpossiblewaystoseparatethetwoleaflets,buthasnotyetbeenusedforanalysisoftheacylchaincomposition. OrderedMembraneNanodomainsintheCytoplasmicPlasmaMembraneLeaflet Currentlytheco-existenceoftwoliquidphases,liquidordered(lo)-andliquiddisordered(ld),isthebestexplanationfordomainsofdifferentiallipidpackingobservedintheplasmamembranealthoughtheperfectprooftocharacterizethemasphasesisalmostaschallengingtoobtainastheabsoluteevidencefortheirdismissal.Thisneithermeansthatproteinsorlipidscouldnotalsoshowlocalenrichmentunrelatedtodifferentiallipidpacking,thatplasmamembranedomainsneedtobeinthemicronrangenorthatcellularmembranesareatequilibrium(AckermanandFeigenson,2015;MouritsenandBagatolli,2015). Anoutstandingquestioninthemembranenanodomainfieldiswhetherlo-domainscanforminthelipidmixespresentintheinnerleafletoftheplasmamembrane.Frommodelmembranestudiesitisclearthatthelipidmixesmimickingtheouterplasmamembraneleaflet(PC,SL,andcholesterol),canformco-existingld-andlo-domains(Ahmedetal.,1997;deAlmeidaetal.,2003;VeatchandKeller,2005).Themainphospholipidsintheinnerleaflet(PE,PS,andPC)canonlyformld-phaseeveninthepresenceofcholesterol(WangandSilvius,2001;Kiesslingetal.,2006).Infact,whentheacylchainsofPE,PS,andPCaremostlyunsaturated,astheyareinvivo,lipidmixeswithahighPEcontentdonotevenformabilayerbutformahexagonalorcubicphase(BoniandHui,1983)anditwasrecentlyproposedthatthehighbendingfreeenergyofPEiswhatattractscholesteroltotheinnerleaflet(GiangandSchick,2014).DespitethefailureofsymmetricPE/PC/PSlipidmixestosometimesformbilayers,theydomakeuponehalfofthecellularplasmamembranehighlightingthateffectsofasymmetriclipidcompositionscannotbepredictedfromstudiesofsymmetricalmodelmembranes.Moreover,thedifferenceinthemembraneorderoflo-andld-domainsinmostmodelmembranestudiesisfargreaterthanthatpossibleintheplasmamembraneconsideringitslipidcomposition,makingpredictionsofprobe,lipid,andproteinpartitioningintheplasmamembranefromsuchstudiesoflimiteduse. Inmodelmembraneslo-domainscanbecharacterizedbiochemicallybytheirinsolubilityinnon-ionicdetergents,TritonX-100(TX)beingthemostwidelyused,thatwhenusedat4°Cproducesdetergentresistantmembranes(DRMs)thatfloatinsucrosedensitygradients.TheamountofTX-DRMsreflectsthefractionoflo-domainsinthemembranes(Ahmedetal.,1997)andthelipidsretrievedinTX-DRMscanformlo-phase(Schroederetal.,1994).Incells,therelationshipbetweenDRMsandlo-domainsismoretenuous(Lichtenbergetal.,2005;AshrafzadehandParmryd,2015;SevcsikandSchütz,2016).TX-DRMsfromTcellsaregiganticratherthannanosize(MageeandParmryd,2003)andproteinsnormallyresidentinorganellesotherthantheplasmamembraneappearinTcellTX-DRMs(vonHalleretal.,2001).However,TX-DRMsdosuggestthatlo-domainsinthetwoplasmamembraneleafletsarecoupledsincetheyareenrichedinbothsphingomyelinlikelytooriginatefromtheouterleafletandsaturatedglycerophospholipidsprobablyoriginatingfromtheinnerleafletrelativetobothtotalcellandplasmamembranelipids(Fridrikssonetal.,1999).Moreover,TX-DRMscontainacylatedproteinsthatinintactcellsareanchoredtotheinnerplasmamembraneleafletindicativeof,butnotevidencefor,innerleafletlo-domains(Melkonianetal.,1999). Severalotherlinesofinvestigationindicatethatlo-domainscouldexistintheinnerplasmamembraneleafletandhighlightthatleafletasymmetrychangesthebehaviorofmonolayers.Inmoleculardynamics(MD)simulationsofasymmetricbilayers,lo-domainsinoneleafletcaninduceregisteredordereddomainsinanopposingleafletwithacompositionthatonitsownwouldnotallowlo-domainformation(PerlmutterandSachs,2011;Polleyetal.,2014).MDsimulationsandtheoreticalconsiderationshavealsosuggestedtheoppositepossibilitythatmembranefluidisationinoneleafletmaycauseadecreaseintheorderoforevenpreventphaseseparationintheopposingleaflet(Wagneretal.,2007;Sunetal.,2015).Inasymmetricsupportedbilayers,lo-domainsonthesupportedsidecaninducelo-domainsinthefreesidewithinnerleafletlipidmixesthatonlyformld-phaseontheirown(Kiesslingetal.,2006),aprocessthatwaslatershowntorequireacylchaindiversityamongtheinnerleafletlipids(Wanetal.,2008).Inblackmembranesithasalsobeendemonstratedthatldandlophaseseparationinoneleafletcaninducephaseseparationinanopposingld-phaselipidmixandmoreoverthatldandlophaseseparationcanbesuppressedbyld-phaselipidmixes(CollinsandKeller,2008).Alsoinasymmetricvesicles,producedbylipidexchange,registeredlo-domainscanbeinducedinaldlipidmixbyanopposingldandlophaseseparatedbilayer(LinandLondon,2015)and,conversely,agelphasebecomeslessorderedthanthatinsymmetricbilayerswhenfacingld-phase(Heberleetal.,2016).However,directevidenceoftheexistenceofinnerplasmamembraneleafletlo-domainsisstillmissing. TheRegistrationofMembraneNanodomainsintheTwoLeaflets Theaggregationofregistereddomainscontainingnon-transmembranesignalingmoleculescouldfacilitatesignaltransductionacrosstheplasmamembranebyseparatingdeactivatingmoleculesfromtheirsubstrates(SimonsandToomre,2000;Mageeetal.,2005;Mongrandetal.,2010),butwhetherdomainsincellplasmamembranesareregisteredislargelyunknown.Whenld-andlo-domainsco-existinbothleafletsofabilayer,theycanadopttwostrategiestominimizetheenergycostofthedomainthicknessmismatch.Domainscouldeitherberegisteredtominimizethecontactareabetweenthetwophases,oranti-registeredtominimizethedifferenceinthicknessoverthebilayer(Figure2).Notethatcompleteanti-registrationisonlypossiblewheneachdomaintypeoccupies50%ofthetotalmembranedistributedatanyfractionaldivisionbetweenthetwoleaflets.Sincetheproportionofplasmamembranelo-andld-domainsinlivecellsisnotfixed(Mahammadetal.,2010;Owenetal.,2012;Dinicetal.,2013;Golfettoetal.,2015),domainregistrationisthemorelikelyscenario.Moreover,thelikelysimilarityinlipidcompositionofplasmamembraneld-andlo-phasesfavorstheirregistration(Fowleretal.,2016). FIGURE2 Figure2.Domainregistrationacrossthebilayer.Interleafletinteractionsfavordomainsinthetwoleafletstoberegistered(A),whereashydrophobicmismatchfavorsdomainantiregistration(B),whichservestoeventhemembranethickness. Contributingfactorstodomainregistrationcouldbetransmembraneproteins,lipidinterdigitation,membranecurvature,linetension,cholesterolflip-flop,andelectrostaticinteractions(Nickelsetal.,2015)ofwhichchaininterdigitationhasbeeninvokedasthemajorcontributingfactor(May,2009)butalsohasbeentotallydismissed(Collins,2008).Arecentexperimentaldeterminationofthestrengthofthecouplingparameterthatcausesdomainregistrationmatchesatheoreticalpredictionswithvaluesaround0.01kBT/nm2(Putzeletal.,2011;Blosseretal.,2015),butconsiderablyhighervalueshavealsobeensuggestedfromtheoreticalconsiderations(May,2009).Intriguingly,MDsimulationsofpolymershaveshownthatforcedsplittingofregisteredlo-domainsmakethemmovetowardoneanotherlongbeforetheyareincontact,i.e.,theysenseeachotherspresencethroughtheld-phase(Pantanoetal.,2011).Thissuggeststhatcouplingbetweenlipidsissubstantialandinsymmetricbilayerstheenergyinvolvedinthecouplinghasbeenestimatedtobearound100cal/molofphospholipid(Zhangetal.,2007). Recently,ithasbeenarguedboththatlinetensionalone(Galimzyanovetal.,2015)orthecompetitionbetweenlinetensionandleafletcouplingdeterminesdomainregistration(WilliamsonandOlmsted,2015).However,linetensionintheplasmamembraneislikelytobesmallduetothewiderangeoflipidspeciesavailabletosmoothenanyhydrophobicmismatch—adiversitythatwouldalsoresultinahighsimilarityinthecompositionofco-existingld-andlo-domains.Thusthelipiddiversityandaswellastheasymmetriclipiddistributionneedtobeincorporatedintoboththeoreticalandmodelmembranestudies.Intheirabsencetheresultsarelessphysiologicallyrelevant. Registrationoflo-domainsinasymmetricbilayershasbeendescribedinMDsimulations,supportedbilayers,blackmembranesandvesicles(CollinsandKeller,2008;Wanetal.,2008;ChengandLondon,2011;Chiantiaetal.,2011;PerlmutterandSachs,2011;Polleyetal.,2014),indicatingthatregistrationisthefavoredorganizationalsoincells.Ofnoteisthatdomaincouplinginsupportedbilayersisdependentondistancingthemembranefromthesupport(Gargetal.,2007). Wepioneeredcellstudiesontheregistrationofplasmamembranenanodomainsbetweenleafletsbyusingaprobethatexclusivelyreportonthemembraneorderoftheouterplasmamembraneleaflet.Wefoundthatdecreasingthelevelofactinfilamentsattachedtoinnerplasmaleafletlipidsresultedinalowerfractionoflo-domainsintheouterleaflet(Dinicetal.,2013).Theimplicationofourresultsisthatadirecteffectononeplasmamembraneleafletiscommunicatedtotheotherwithouttheinvolvementoftransmembraneproteins. SizeofDomains Wheninterleafletcouplingisstudiedinliposomesandsupportedlipidbilayers,domainsof1μmorlargerareusuallyexamined,butsuchlargedomainsarenotlikelytoexistintheplasmamembraneofmostmammaliancells(LingwoodandSimons,2010;AshrafzadehandParmryd,2015).Actually,studiesusingsingleparticletrackingindicatedthatatransientdomainassmallas10nmcantransmitsignalstothecytoplasmtoinducephysiologicalreactions(Suzukietal.,2007a,b).Therefore,inordertostudyphysiologicalimportanceofdomainregistrationintheplasmamembrane,domainsinthesmallsizerangeneedtobeexamined. Thisisachallengingtask,however,consideringthemethodscurrentlyavailable.Forexample,GFP-taggedlipid-bindingproteinsarecommonlyusedasprobestodefinethelipiddistributionbyfluorescencemicroscopy.Butwhenoneprobemoleculebindstotheheadgroupofatargetlipid,whichshouldbeintherangeof~1nmindiameter,bindingofanotherprobemoleculetoadjacenttargetlipidsisprecludedduetosterichindrance.Thislimitationisnotderivedfromthelimitationinspatialresolutionofmicroscopes,butfromthelargesizeofprobescomparedtolipidheadgroups,sothatuseofsuper-resolutionmicroscopesisnothelpful(forotherpotentialproblemsofthemethod,seeTakatorietal.,2014).Interferometricdetectionofscatteringcircumventsseveraloftheproblemsofparticletrackingandhasalateralresolutioninthelownmscale(Lindforsetal.,2004),buthasnotyetbeenappliedtocells.Importantlytrackingmethodscan,ifcelltopographyisaccountedfor(Adleretal.,2010),detectanomalousdiffusioncausedbyplasmamembranedomainco-existencebutdonotrevealwhatiscausingdomainformation;forexampledifferentiallipidpacking,proteinconcentrationorchargeaggregation. Inelectronmicroscopy,colloidalgoldparticlesoflargerthan5–10nmindiameterareoftenusedasmarkersandonesuchgoldparticlemayoverlaymanylipidmolecules(Fujitaetal.,2007;Zhouetal.,2014).Therefore,aclusterofcolloidalgoldlabelsindicatesenrichmentofthetargetlipidinthearea,butdoesnotnecessarilyindicateclusteringoflipidmolecules(althoughclusteringoflipidsislikelytooccurmorefrequentlywhentheirlocaldensityishigher). Itisevenmoredifficultistoexaminewhetherdomainsinthetwoleafletsareregistered.Useofcomplementaryfreeze-fracturereplicashasenabledtheexaminationofmatchingareasinthetwoleaflets(Hagiwaraetal.,2005),butevenwiththismethod,theregistrationofsmalldomainsisdifficulttostudywithoutatechnicalbreakthrough. CrossingtheMid-Line—APrivilegeofAsymmetricLipidswithOneLongAcylchain Thelipidrafthypothesisstatesthatsmalltightlypackedlipiddomainsfloatinaseaoflesstightlypackedlipidsandproposesthatlipidraftsinthetwoleafletsarecoupledbytheinterdigitationoflongsaturatedacylchainsonglycosphingolipidsintheouterleafletextendingintotheinnerleaflet(SimonsandIkonen,1997).Theproposedtypeofinterdigitationwasdifferentfromtheinitialuseofthewordforlongacylchainsspanningtheentirehydrophobiccoreofthebilayermadeupoflipidswithconsiderablyshorteracylgroups(BoggsandKoshy,1994;SchramandThompson,1995).Insteadthenowacceptedmeaningofinterdigitation,longacylchainscrossingthemidplaneofthebilayerandpenetratingasmalldistanceintotheopposingleaflet(Figures1,3),washighlighted.Thistypeofinterdigitationisforinstanceobservedforlongacylchain(C24)glycosphingolipidswhentheyareminorcomponentsinabiologicallyrelevant(C16-C18)matrix(Mehlhornetal.,1988;Morrowetal.,1995).Althoughtheideasbroughttogetherinthelipidrafthypothesiswerenotnew,ithadanenormousimpactinpromotingmembraneresearch.Muchofthepolarizeddiscussioninthefieldhasbeencausedbytheuseofquestionablemethodology(KlotzschandSchütz,2013;AshrafzadehandParmryd,2015),buttheexistenceofplasmamembranenanodomainswithdifferentlipidpackingwassuggestedfromstudiesthatpredatethelipidrafthypothesisbydecades(Morrisettetal.,1975;Karnovskyetal.,1982).Althoughfrequentlymisinterpreted,the1972fluidmosaicmodeldoesnotruleout,butratherinsists,thatshort-rangeorderintheplasmamembraneexists(SingerandNicolson,1972),animportantfeaturethatwasrecentlyclarifiedbyoneofthemodelfounders(Nicolson,2014). FIGURE3 Figure3.Pinningasamechanismtonucleatemembranenanodomains.Immobilisingplasmamembranecomponentscaninducelo-domainformation.Thishasbeendemonstratedbothforinnerleafletphoshoinositideslinkedtoactinfilaments(A)andouterleafletcomponentslikeGPI-anchoredproteins(B)(Dinicetal.,2013).Thecreationofnewlo-domainsislikelytoplayanimportantroleinthemolecularsortingrequiredforcellularprocessessuchassignalingandmembranetrafficking. Sphingolipids(SLs)canhaveabigdifferenceinchainlengthbetweenthesphingosinechain,thattendstobeC18,andtheamide-linkedacylchains,thatdifferfromC16toC24innaturallyoccurringSLs,creatingmanyasymmetricSLspecies.Unsurprisingly,MDsimulationsofsymmetricbilayershaveshownthatthegreaterthelengthmismatchbetweenthematrixlipidacylchainsandthegreaterthelengthmismatchbetweentheacylandthesphingosinechains,themoreinterdigitationisobserved(Niemeläetal.,2006).BendingoflongacylchainstowardtheirownleafletisalsoapossibilityandhasrecentlybeenobservedinbothMDsimulationsofSLsandmodelmembranesstudiesoffreefattyacidsinglycerophospholipidbilayers(PazRamosetal.,2016;Rógetal.,2016).However,bendingtowardthewaterinterfacecanbegreatlyreducedbycholesterolrevealedbyamodelmembranestudyonmethyldistributions(Mihailescuetal.,2011).Interestingly,simulationsshowthatcouplingisstrongerifthereismorecholesterolintheouterthanintheinnerleaflet(Rógetal.,2016). ArecentsimulationstudyonsymmetricalmembranesmadeupofasymmetricPCswithdifferencesintheiracylchainlengthssuggestedthatlipidcomplementarityinchainlengthcouldacttoassureuniformacylchainpacking(Capponietal.,2016).Thisisalongthelinesofpreviouslipidcomplementaritystudiesindicatingthat,whenpresentatmatchingconcentrations,shortacylchainsarefoundoppositelongonestocreateasmoothmembrane(Zhangetal.,2004,2005;Stevens,2005).Thatsuchanorganizationshouldoccurinbiologicalmembranes,withdiverseandasymmetriclipidcompositions,islessclear,especiallysincedomainsofdifferentorderandthuspresumablythicknessarefoundintheplasmamembrane(Gausetal.,2003;Dinicetal.,2013). ThatasymmetriclipidsfrombothleafletscanaffectcouplinginasymmetricmembraneswasfirstdemonstratedinGUVswhereSMC24:0wasshowntoreducethediffusionofPOPCfarmorethanthatofDOPC(ChiantiaandLondon,2012).ArecentMDsimulationstudy,withasymmetricmembraneswithcompositionscloselymimickingcellplasmamembranes,supportedthisfindingwithanotherlipidclassandfoundastrongercouplingfirstlyinasymmetricvs.symmetricmembranesandsecondlythestrongestcouplingwhentheinnerleafletcontainedPS18:0/18:1andtheouterleafletcontainedSM24:0(Rógetal.,2016).ThatPS18:0/18:1playsanimportantbiologicalrolewasimpliedinarecentstudyrevealingthatPSisrequiredforretainingcholesterolintheinnerleafletincellsandthatPS18:0/18:1uniquelyhasthecapacitytoprotectcholesterolinmodelsymmetricalmembranesfromoxidation(MaekawaandFairn,2015).Intriguingly,GPI-anchorproteinclusteringwasalsoshowntobedependentoninnerleafletPSbutwithlongacylchains,ratherthanaspecificacylchaincombination,beingtherequirement(Raghupathyetal.,2015).ThiswasinterpretedasenablinginteractionwiththelongacylchainsrequiredfortheGPI-anchoredproteinstoclusterallowingcross-talkofspecificlipidsacrossthebilayermidplane.Inlightofthestudydiscussedabove(MaekawaandFairn,2015),wespeculatethatthePSmayhavebeenrequiredtomaintainthecholesterollevelintheinnerleafletatalevelsufficientfortheformationoflo-domainssinceclusteredGPI-anchoredproteinsarefoundinsuch(Dinicetal.,2013)andcholesterolpreviouslyhasbeenidentifiedasimportantfortheirclustering(Sharmaetal.,2004). ImperfectioninLipidAsymmetryandDomainRegistration Asdiscussedabove,lipidshaveasymmetricdistributionsintheplasmamembrane,buttheasymmetryisnotcompleteandnon-negligibleamountsofmostlipidsarelikelytoexistintheless-favoredleaflet.Suchimperfectioninasymmetry,especiallythatofSM,couldbeofconsiderableimportancefordomainregistration.Inmodelmembranesinterleafletcouplingcanoccurwithno(oraminimalamountof)SMintheinnerleaflet(Wanetal.,2008;Viscoetal.,2014;LinandLondon,2015).However,ifasmallbutsignificantamountofSMexiststheinnerleaflet,assuggestedbybiochemicalandhistochemicalstudies(Devaux,1991;Zachowski,1993;Murateetal.,2015),thatSMcouldpotentiallycontributetolo-domainformation,whichcouldmakecouplingwiththeouterleafletlo-domainsveryefficient(Hallingetal.,2008;Lönnforsetal.,2011).NaturallythisSM-SMinteractionmechanismdoesnotexcludeparticipationofotherphospholipidsinlo-domainformationandinterleafletcoupling.Rather,theSM-basedcouplingmayfunctionasaninitialseedtoinducefurtherchangesbylateralinteractionwithotherphospholipids,suchasPSorinositolphospholipids. Pinning IthasbeenshownrepeatedlythatthebehaviorofouterleafletlipidsandGPI-anchoredproteinsisinfluencedbyactindynamics(Fujiwaraetal.,2002;Kwiketal.,2003;Goswamietal.,2008;Fujitaetal.,2009;Muelleretal.,2011),buthowactininthecytoplasmcanexerteffectsontheouterleafletoftheplasmamembranehasbeenalongstandingenigma.Celltopographyandtheproblematicinterpretationofthreedimensionaldatain2Dcouldexplainatleastsomeofthisbehavior(Adleretal.,2010),butpinningisalsoimportantforthecommunicationbetweenactinfilamentsandtheouterleaflet. Pinning,i.e.,whenthemobilityofmembranecomponentsiseitherreducedorabsent,altersthemixingentropy,whichcanalterthephasebehaviorand/ormembraneorganization(PutzelandSchick,2009;ArumugamandBassereau,2015).Proteinpinningcantransmittherearrangementofproteinsfromoneleaflettotheother.Thiswasfirststudiedinerythrocyteghostswhereitwasshownthattheenclosureofantibodiestospectrin,aproteinassociatedwiththeinnerleaflet,causedtherearrangementofglycolipidsandglycoproteinsintheouterleaflet(NicolsonandPainter,1973).Analogously,bindingoflectinstotheouterleafletcausedtherearrangementofspectrin(JiandNicolson,1974).Lectinsarealsoknowntoaffectthephysicalpropertiesoftheplasmamembrane(EvansandLeung,1984).Forlipids,pinningcannucleateeitheranld-phaseasshowninphosphatidylinositol4,5-bisphosphate[PI(4,5)P2]-containinggiantunilamellarvesicles(GUVs)whereactinpolymerisationinducedphase-separation(LiuandFletcher,2006),anlo-phaseasshowninGUVsbyGM1cross-linking(Hammondetal.,2005)oruponadhesion(Gordonetal.,2008). Simulationsoncriticalpointfluctuationshaveindicatedthatpinningoflipidstoactinfilamentscouldpreventlarge-scalephaseseparation(Ehrigetal.,2011;Machtaetal.,2011)andearliersimulationssuggestedthatmembraneproteinobstaclesorpinningcouldhavethesameeffect(YethirajandWeisshaar,2007;Fanetal.,2010;Gómezetal.,2010),phenomenathatwererecentlyobservedinmodelmembranes(Honigmannetal.,2014;Arumugametal.,2015).Criticalpointfluctuationsmayhoweverbesuperfluousforphaseseparationsinceitcanbeachievedbycouplingofmechanicalforceslikeactinpolymerisationtomembranecomposition(SensandTurner,2011).Thatpinningdoespreventlarge-scalephaseseparationintheplasmamembraneissupportedbytheobservationthatvisiblelarge-scalephaseseparationcanbeseeningiantplasmamembranevesicles(GPMVs)thatdonotcontaincorticalactin(Senguptaetal.,2008;Leventaletal.,2011).Furthermore,membraneblebsinlivecells,wherethemembraneconnectiontoactinfilamentshasbeenlost(Charrasetal.,2005),arestructuresintheμmrangewithalowerlaurdangeneralizedpolarization-valuethanthatfoundinthebulkplasmamembraneofthesamecells,indicativeofdisorderedlipidarrangement(Dinicetal.,2013).Sincelo-domainsformwhereactinfilamentsarepinnedtotheplasmamembrane,blebsmaycontainld-phaseonlyandrepresentanexampleofmicroscopicallyvisibledomainsinlivecellsalongsidetheremainingintermittentlyactinfilamentpinned,andfromalipidpackingperspective,moreheterogeneousplasmamembraneoflivecells. Inasymmetricmodelmembranestudiesthegeneralassumptionisthatanouter-side-likelipidmixcouldinducedomainformationinacytoplasmic-side-likelipidmixthatcannotphaseseparateonitsown(Kiesslingetal.,2006;CollinsandKeller,2008;LinandLondon,2015)buttheoppositeislessfrequentlyconsidered.However,incellsphosphoinositidesintheinnerplasmamembraneleafletcanbepinnedtointracellularactinfilamentsandcausetheformationoflo-domainsintheouterplasmamembraneleaflet(Figure3A),demonstratingthatthereisaninsideoutcommunicationforthelipidpackingofthetwoleaflets(Dinicetal.,2013).Lo-domainscanalsoformwhenouterleafletcomponentslikeGM1andGPI-anchoredproteinsarepatched(Figure3B),demonstratingthatthephysicalstateoftheplasmamembraneisalsoinfluencedbythecell'sextracellularenvironment(Dinicetal.,2013).Thatimmobilizationbypinningcancausetheformationoflo-domainsinlivecellswasthusdemonstratedin2013(Dinicetal.,2013).DespitethisalaterprominentstudyusingsimulationsandGPMVsconcludedbyspeculatingthatpinninginducedlo-domainformationmightbepossibleinlivecells,claimingitasanovelandoriginalidea,reversingtheusualprocessofobservationfollowingspeculation(Raghupathyetal.,2015). AlinkbetweenGM1,pinningandinterdigitationhasrecentlybeenfoundinbothsimulationsandmodelmembranestudies(Spillaneetal.,2014;Sunetal.,2015).Itseemslikelythatthelo-domainformationobservedintheplasmamembraneaftercross-linkingouterleafletcomponents,describedabove,causesthepinnedmoleculestostretchandhencemakecontactwiththeinnerleafletlipids,bothnucleatingandstabilizingthedomains.Pinningmayalsoresultinmembranecurvaturethataffectsbothleaflets(Deveralletal.,2008).Althoughwearewell-awareofboththeimportanceandprevalenceofmembranecurvatureincells(Adleretal.,2010;ParmrydandOnfelt,2013),wehavechosentolimitthediscussioninthisreviewtoothermechanismsofimportanceformembranenanodomainformation. PI(4,5)P2isknowntointeractwithmanyactin-bindingproteins,regulatingtheiractivityandlocalization(Saarikangasetal.,2010)andmaybethephosphoinositidethatlinkschangesinactindynamicstotheproportionofplasmamembranelo-domains(Dinicetal.,2013).Interestingly,althoughPI(4,5)P2oftencontainsapolyunsaturatedacylchain(McLaughlinetal.,2002),whichmightnotbeexpectedtobefoundinlo-domains,PI(4,5)P2isneverthelessenrichedinplasmamembranelo-domains(Parmrydetal.,2003).Alikelyexplanationforthisapparentparadoxisthattheexpectationsarisefromthebehavioroflipidsinwell-separatedld-andlo-domainsinmodelmembranesthathaveanorderdifferenceimpossibletoachieveintheplasmamembrane. PSisalsoacandidatetomediatetheactin-outerleafletlipidcoupling,asitisknowntobindnumerouscytoplasmicproteins(forareview,seeStaceandKtistakis,2006),includingactin-bindingproteins(Cohenetal.,1986;Mugurumaetal.,1995;Makuchetal.,1997).Actually,themobilityofPSintheplasmamembranehasbeenshowntoincreaseuponactindepolymerization(Kayetal.,2012;Zhouetal.,2014),indicatingthatPSmaybeconstitutivelyboundtotheactinmeshworkoritsmovementsconfinedbytopographicalfeaturesofthemembrane(Adleretal.,2010).BindingbetweenPSandactin-linkingproteinsisthoughttooccurelectrostaticallytothePSheadgroupandthusshouldbeindependentoftheacylchaincomposition(WoodandHarlow,1969;Hicksetal.,2006),butitislikelytobeenhancedifPSisclustered. Interestingly,theacylchaincompositionofthedifferentphospholipidspecies,especiallyPS,variesbetweentissues(Hicksetal.,2006).Boththeefficiencyofdomainregistrationandinterleafletcouplingmaydifferwithacylchaincomposition:withastrongercoupling,theinnerleafletshouldbecomemoreorderedandhencesimilartotheouterleaflet.Howtheacylchaincompositionisregulatedisnotclear,butLand'scycle,remodelinginnerleafletphospholipids(Hishikawaetal.,2014),maybeinvolved.Theregulatorymechanismandthepossiblecorrelationbetweentheacylchaincompositionandinterleafletcouplingwarrantfurtherstudies. Outlook Comparedwithaminoacidsandnitrogenousbasesthelipiddiversityisenormousandintriguing.Similarly,comparedtoproteinsandnucleicacids,ourknowledgeofmembranesislimited.Toolsarenowbeingdevelopedtoforinstanceunraveltherolesofindividuallipidspeciesincellularprocesses,tostudytheeffectofleafletasymmetryandtoperformdetailedexaminationofthelipiddistributionwithinleaflets—alloutstandingquestionswhichrequireclosecollaborationsofscientistsfromphysical,chemical,andbiologicaldisciplines.Wepredictthatwithinthenextdecadeexcitinginterdisciplinarybreakthroughsinthemembranebiologyfieldwillunravelmechanismsoffundamentalbiologicalprocessesandthatwewillapproachaconsensusregardingthenatureofplasmamembranenanodomains. AuthorContributions IPconceivedtheidea.IPandTFwrotethereview. ConflictofInterestStatement Theauthorsdeclarethattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. Acknowledgments WethankJeremyAdlerassistanceinpreparingfiguresandcriticalreadingofthemanuscript.ThisworkwassupportedbygrantstoTFfromGrants-in-AidforScientificResearchfromtheMinistryofEducation,Culture,Sports,Science,andTechnologyoftheGovernmentofJapantoTF(15H02500,15H05902)andtoIPfromtheSwedishResearchCouncil(2015-04764)andO.E.andEdlaJohansson'sFoundation. References Ackerman,D.G.,andFeigenson,G.W.(2015).Lipidbilayers:clusters,domainsandphases.EssaysBiochem.57,33–42.doi:10.1042/bse0570033 PubMedAbstract|CrossRefFullText|GoogleScholar Adler,J.,Shevchuk,A.I.,Novak,P.,Korchev,Y.E.,andParmryd,I.(2010).Plasmamembranetopographyandinterpretationofsingle-particletracks.Nat.Methods7,170–171.doi:10.1038/nmeth0310-170 PubMedAbstract|CrossRefFullText|GoogleScholar Ahmed,S.N.,Brown,D.A.,andLondon,E.(1997).Ontheoriginofsphingolipid/cholesterol-richdetergent-insolublecellmembranes:physiologicalconcentrationsofcholesterolandsphingolipidinduceformationofadetergent-insoluble,liquid-orderedlipidphaseinmodelmembranes.Biochemistry36,10944–10953.doi:10.1021/bi971167g PubMedAbstract|CrossRefFullText|GoogleScholar Arthur,J.R.,Heinecke,K.A.,andSeyfried,T.N.(2011).FilipinrecognizesbothGM1andcholesterolinGM1gangliosidosismousebrain.J.LipidRes.52,1345–1351.doi:10.1194/jlr.M012633 PubMedAbstract|CrossRefFullText|GoogleScholar Arumugam,S.,andBassereau,P.(2015).Membranenanodomains:contributionofcurvatureandinteractionwithproteinsandcytoskeleton.EssaysBiochem.57,109–119.doi:10.1042/bse0570109 PubMedAbstract|CrossRefFullText|GoogleScholar Arumugam,S.,Petrov,E.P.,andSchwille,P.(2015).Cytoskeletalpinningcontrolsphaseseparationinmulticomponentlipidmembranes.Biophys.J.108,1104–1113.doi:10.1016/j.bpj.2014.12.050 PubMedAbstract|CrossRefFullText|GoogleScholar Ashrafzadeh,P.,andParmryd,I.(2015).Methodsapplicabletomembranenanodomainstudies?EssaysBiochem.57,57–68.doi:10.1042/bse0570057 PubMedAbstract|CrossRefFullText|GoogleScholar Barsukov,L.I.,Kulikov,V.I.,andBergelson,L.D.(1976).Lipidtransferproteinsasatoolinthestudyofmembranestructure.Inside-outsidedistributionofthephospholipidsintheprotoplasmicmembraneofMicrococcuslysodeikticus.Biochem.Biophys.Res.Commun.71,704–711. PubMedAbstract|GoogleScholar Behnke,O.,Tranum-Jensen,J.,andvanDeurs,B.(1984).Filipinasacholesterolprobe.II.Filipin-cholesterolinteractioninredbloodcellmembranes.Eur.J.CellBiol.35,200–215. PubMedAbstract|GoogleScholar Blosser,M.C.,Honerkamp-Smith,A.R.,Han,T.,Haataja,M.,andKeller,S.L.(2015).Transbilayercolocalizationoflipiddomainsexplainedviameasurementofstrongcouplingparameters.Biophys.J.109,2317–2327.doi:10.1016/j.bpj.2015.10.031 PubMedAbstract|CrossRefFullText|GoogleScholar Boggs,J.M.,andKoshy,K.M.(1994).Dothelongfattyacidchainsofsphingolipidsinterdigitateacrossthecenterofabilayerofshorterchainsymmetricphospholipids?Biochim.Biophys.Acta1189,233–241. PubMedAbstract|GoogleScholar Boni,L.T.,andHui,S.W.(1983).Polymorphicphasebehaviourofdilinoleoylphosphatidylethanolamineandpalmitoyloleoylphosphatidylcholinemixtures.Structuralchangesbetweenhexagonal,cubicandbilayerphases.Biochim.Biophys.Acta731,177–185.doi:10.1016/0005-2736(83)90007-X PubMedAbstract|CrossRefFullText|GoogleScholar Bretscher,M.S.(1972).Asymmetricallipidbilayerstructureforbiologicalmembranes.Nat.NewBiol.236,11–12. PubMedAbstract|GoogleScholar Bütikofer,P.,Lin,Z.W.,Chiu,D.T.,Lubin,B.,andKuypers,F.A.(1990).Transbilayerdistributionandmobilityofphosphatidylinositolinhumanredbloodcells.J.Biol.Chem.265,16035–16038. PubMedAbstract|GoogleScholar Buton,X.,Hervé,P.,Kubelt,J.,Tannert,A.,Burger,K.N.,Fellmann,P.,etal.(2002).TransbilayermovementofmonohexosylsphingolipidsinendoplasmicreticulumandGolgimembranes.Biochemistry41,13106–13115.doi:10.1021/bi020385t PubMedAbstract|CrossRefFullText|GoogleScholar Capponi,S.,Freites,J.A.,Tobias,D.J.,andWhite,S.H.(2016).Interleafletmixingandcouplinginliquid-disorderedphospholipidbilayers.Biochim.Biophys.Acta1858,354–362.doi:10.1016/j.bbamem.2015.11.024 PubMedAbstract|CrossRefFullText|GoogleScholar Charras,G.T.,Yarrow,J.C.,Horton,M.A.,Mahadevan,L.,andMitchison,T.J.(2005).Non-equilibrationofhydrostaticpressureinblebbingcells.Nature435,365–369.doi:10.1038/nature03550 PubMedAbstract|CrossRefFullText|GoogleScholar Cheng,H.T.,andLondon,E.(2011).Preparationandpropertiesofasymmetriclargeunilamellarvesicles:interleafletcouplinginasymmetricvesiclesisdependentontemperaturebutnotcurvature.Biophys.J.100,2671–2678.doi:10.1016/j.bpj.2011.04.048 PubMedAbstract|CrossRefFullText|GoogleScholar Chiantia,S.,andLondon,E.(2012).Acylchainlengthandsaturationmodulateinterleafletcouplinginasymmetricbilayers:effectsondynamicsandstructuralorder.Biophys.J.103,2311–2319.doi:10.1016/j.bpj.2012.10.033 PubMedAbstract|CrossRefFullText|GoogleScholar Chiantia,S.,Schwille,P.,Klymchenko,A.S.,andLondon,E.(2011).AsymmetricGUVspreparedbyMbetaCD-mediatedlipidexchange:anFCSstudy.Biophys.J.100,L1–L3.doi:10.1016/j.bpj.2010.11.051 PubMedAbstract|CrossRefFullText|GoogleScholar Cohen,A.M.,Liu,S.C.,Derick,L.H.,andPalek,J.(1986).Ultrastructuralstudiesoftheinteractionofspectrinwithphosphatidylserineliposomes.Blood68,920–926. PubMedAbstract|GoogleScholar Collins,M.D.(2008).Interleafletcouplingmechanismsinbilayersoflipidsandcholesterol.Biophys.J.94,L32–L34.doi:10.1529/biophysj.107.124362 PubMedAbstract|CrossRefFullText|GoogleScholar Collins,M.D.,andKeller,S.L.(2008).Tuninglipidmixturestoinduceorsuppressdomainformationacrossleafletsofunsupportedasymmetricbilayers.Proc.Natl.Acad.Sci.U.S.A.105,124–128.doi:10.1073/pnas.0702970105 PubMedAbstract|CrossRefFullText|GoogleScholar Crain,R.C.,andZilversmit,D.B.(1980).Twononspecificphospholipidexchangeproteinsfrombeefliver.2.Useinstudyingtheasymmetryandtransbilayermovementofphosphatidylcholine,phosphatidylethanolamine,andsphingomyelininintactraterythrocytes.Biochemistry19,1440–1447.doi:10.1021/bi00548a027 PubMedAbstract|CrossRefFullText|GoogleScholar deAlmeida,R.F.,Fedorov,A.,andPrieto,M.(2003).Sphingomyelin/Phosphatidylcholine/Cholesterolphasediagram:boundariesandcompositionoflipidrafts.Biophys.J.85,2406–2416.doi:10.1016/s0006-3495(03)74664-5 PubMedAbstract|CrossRefFullText|GoogleScholar Devaux,P.F.(1991).Staticanddynamiclipidasymmetryincellmembranes.Biochemistry30,1163–1173.doi:10.1021/bi00219a001 PubMedAbstract|CrossRefFullText|GoogleScholar Deverall,M.A.,Garg,S.,Lüdtke,K.,Jordan,R.,Rühe,J.,andNaumann,C.A.(2008).Transbilayercouplingofobstructedlipiddiffusioninpolymer-tehteredphospholipidbilayers.SoftMatter4,1899–1908.doi:10.1039/b800801a CrossRefFullText|GoogleScholar Dinic,J.,Ashrafzadeh,P.,andParmryd,I.(2013).Actinfilamentsattachmentattheplasmamembraneinlivecellscausetheformationoforderedlipiddomains.Biochim.Biophys.Acta1828,1102–1111.doi:10.1016/j.bbamem.2012.12.004 PubMedAbstract|CrossRefFullText|GoogleScholar Ehrig,J.,Petrov,E.P.,andSchwille,P.(2011).Near-criticalfluctuationsandcytoskeleton-assistedphaseseparationleadtosubdiffusionincellmembranes.Biophys.J.100,80–89.doi:10.1016/j.bpj.2010.11.002 PubMedAbstract|CrossRefFullText|GoogleScholar Emoto,K.,Kobayashi,T.,Yamaji,A.,Aizawa,H.,Yahara,I.,Inoue,K.,etal.(1996).Redistributionofphosphatidylethanolamineatthecleavagefurrowofdividingcellsduringcytokinesis.Proc.Natl.Acad.Sci.U.S.A.93,12867–12872.doi:10.1073/pnas.93.23.12867 PubMedAbstract|CrossRefFullText|GoogleScholar Etemadi,A.H.(1980).Membraneasymmetry.Asurveyandcriticalappraisalofthemethodology.II.Methodsforassessingtheunequaldistributionoflipids.Biochim.Biophys.Acta604,423–475. PubMedAbstract|GoogleScholar Evans,E.,andLeung,A.(1984).Adhesivityandrigidityoferythrocytemembraneinrelationtowheatgermagglutininbinding.J.CellBiol.98,1201–1208.doi:10.1083/jcb.98.4.1201 PubMedAbstract|CrossRefFullText|GoogleScholar Falkovich,S.G.,Martinez-Seara,H.,Nesterenko,A.M.,Vattulainen,I.,andGurtovenko,A.A.(2016).Whatcanwelearnaboutcholesterol'stransmembranedistributionbasedoncholesterol-inducedchangesinmembranedipolepotential?J.Phys.Chem.Lett.7,4585–4590.doi:10.1021/acs.jpclett.6b02123 PubMedAbstract|CrossRefFullText|GoogleScholar Fan,J.,Sammalkorpi,M.,andHaataja,M.(2010).Influenceofnonequilibriumlipidtransport,membranecompartmentalization,andmembraneproteinsonthelateralorganizationoftheplasmamembrane.Phys.Rev.81:011908.doi:10.1103/physreve.81.011908 PubMedAbstract|CrossRefFullText|GoogleScholar Fisher,K.A.(1976).Analysisofmembranehalves:cholesterol.Proc.Natl.Acad.Sci.U.S.A.73,173–177.doi:10.1073/pnas.73.1.173 PubMedAbstract|CrossRefFullText|GoogleScholar Fowler,P.W.,Williamson,J.J.,Sansom,M.S.,andOlmsted,P.D.(2016).Rolesofinterleafletcouplingandhydrophobicmismatchinlipidmembranephase-separationkinetics.J.Am.Chem.Soc.138,11633–11642.doi:10.1021/jacs.6b04880 PubMedAbstract|CrossRefFullText|GoogleScholar Fridriksson,E.K.,Shipkova,P.A.,Sheets,E.D.,Holowka,D.,Baird,B.,andMcLafferty,F.W.(1999).QuantitativeanalysisofphospholipidsinfunctionallyimportantmembranedomainsfromRBL-2H3mastcellsusingtandemhigh-resolutionmassspectrometry.Biochemistry38,8056–8063.doi:10.1021/bi9828324 PubMedAbstract|CrossRefFullText|GoogleScholar Frisz,J.F.,Klitzing,H.A.,Lou,K.,Hutcheon,I.D.,Weber,P.K.,Zimmerberg,J.,etal.(2013).Sphingolipiddomainsintheplasmamembranesoffibroblastsarenotenrichedwithcholesterol.J.Biol.Chem.288,16855–16861.doi:10.1074/jbc.M113.473207 PubMedAbstract|CrossRefFullText|GoogleScholar Fujimoto,K.,Umeda,M.,andFujimoto,T.(1996).Transmembranephospholipiddistributionrevealedbyfreeze-fracturereplicalabeling.J.CellSci.109,2453–2460. PubMedAbstract|GoogleScholar Fujita,A.,Cheng,J.,andFujimoto,T.(2009).SegregationofGM1andGM3clustersinthecellmembranedependsontheintactactincytoskeleton.Biochim.Biophys.Acta1791,388–396.doi:10.1016/j.bbalip.2009.01.008 PubMedAbstract|CrossRefFullText|GoogleScholar Fujita,A.,Cheng,J.,Hirakawa,M.,Furukawa,K.,Kusunoki,S.,andFujimoto,T.(2007).GangliosidesGM1andGM3inthelivingcellmembraneformclusterssusceptibletocholesteroldepletionandchilling.Mol.Biol.Cell18,2112–2122.doi:10.1091/mbc.e07-01-0071 PubMedAbstract|CrossRefFullText|GoogleScholar Fujiwara,T.,Ritchie,K.,Murakoshi,H.,Jacobson,K.,andKusumi,A.(2002).Phospholipidsundergohopdiffusionincompartmentalizedcellmembrane.J.CellBiol.157,1071–1081.doi:10.1083/jcb.200202050 PubMedAbstract|CrossRefFullText|GoogleScholar Galimzyanov,T.R.,Molotkovsky,R.J.,Bozdaganyan,M.E.,Cohen,F.S.,Pohl,P.,andAkimov,S.A.(2015).Elasticmembranedeformationsgoverninterleafletcouplingoflipid-ordereddomains.Phys.Rev.Lett.115:088101.doi:10.1103/PhysRevLett.115.088101 PubMedAbstract|CrossRefFullText|GoogleScholar Garg,S.,Rühe,J.,Lüdtke,K.,Jordan,R.,andNaumann,C.A.(2007).Domainregistrationinraft-mimickinglipidmixturesstudiedusingpolymer-tetheredlipidbilayers.Biophys.J.92,1263–1270.doi:10.1529/biophysj.106.091082 PubMedAbstract|CrossRefFullText|GoogleScholar Gascard,P.,Tran,D.,Sauvage,M.,Sulpice,J.C.,Fukami,K.,Takenawa,T.,etal.(1991).Asymmetricdistributionofphosphoinositidesandphosphatidicacidinthehumanerythrocytemembrane.Biochim.Biophys.Acta1069,27–36.doi:10.1016/0005-2736(91)90100-m PubMedAbstract|CrossRefFullText|GoogleScholar Gaus,K.,Gratton,E.,Kable,E.P.,Jones,A.S.,Gelissen,I.,Kritharides,L.,etal.(2003).Visualizinglipidstructureandraftdomainsinlivingcellswithtwo-photonmicroscopy.Proc.Natl.Acad.Sci.U.S.A.100,15554–15559.doi:10.1073/pnas.2534386100 PubMedAbstract|CrossRefFullText|GoogleScholar Giang,H.,andSchick,M.(2014).Howcholesterolcouldbedrawntothecytoplasmicleafoftheplasmamembranebyphosphatidylethanolamine.Biophys.J.107,2337–2344.doi:10.1016/j.bpj.2014.10.012 PubMedAbstract|CrossRefFullText|GoogleScholar Golfetto,O.,Hinde,E.,andGratton,E.(2015).Thelaurdanspectralphasormethodtoexploremembranemicro-heterogeneityandlipiddomainsinlivecells.MethodsMol.Biol.1232,273–290.doi:10.1007/978-1-4939-1752-5_19 PubMedAbstract|CrossRefFullText|GoogleScholar Gómez,J.,Sagués,F.,andReigada,R.(2010).Effectofintegralproteinsinthephasestabilityofalipidbilayer:applicationtoraftformationincellmembranes.J.Chem.Phys.132,135104.doi:10.1063/1.3381179 PubMedAbstract|CrossRefFullText|GoogleScholar Gordesky,S.E.,andMarinetti,G.V.(1973).Theasymetricarrangementofphospholipidsinthehumanerythrocytemembrane.Biochem.Biophys.Res.Commun.50,1027–1031.doi:10.1016/0006-291X(73)91509-X PubMedAbstract|CrossRefFullText|GoogleScholar Gordon,V.D.,Deserno,M.,Andrew,C.M.J.,Egelhaaf,S.U.,andPoon,W.C.K.(2008).Adhesionpromotesphaseseparationinmixed-lipidmembranes.Europhys.Lett.84:48003.doi:10.1209/0295-5075/84/48003 CrossRefFullText|GoogleScholar Goswami,D.,Gowrishankar,K.,Bilgrami,S.,Ghosh,S.,Raghupathy,R.,Chadda,R.,etal.(2008).NanoclustersofGPI-anchoredproteinsareformedbycorticalactin-drivenactivity.Cell135,1085–1097.doi:10.1016/j.cell.2008.11.032 PubMedAbstract|CrossRefFullText|GoogleScholar Hagiwara,A.,Fukazawa,Y.,Deguchi-Tawarada,M.,Ohtsuka,T.,andShigemoto,R.(2005).Differentialdistributionofrelease-relatedproteinsinthehippocampalCA3areaasrevealedbyfreeze-fracturereplicalabeling.J.Comp.Neurol.489,195–216.doi:10.1002/cne.20633 PubMedAbstract|CrossRefFullText|GoogleScholar Halling,K.K.,Ramstedt,B.,Nyström,J.H.,Slotte,J.P.,andNyholm,T.K.(2008).Cholesterolinteractionswithfluid-phasephospholipids:effectonthelateralorganizationofthebilayer.Biophys.J.95,3861–3871.doi:10.1529/biophysj.108.133744 PubMedAbstract|CrossRefFullText|GoogleScholar Hammond,A.T.,Heberle,F.A.,Baumgart,T.,Holowka,D.,Baird,B.,andFeigenson,G.W.(2005).Crosslinkingalipidraftcomponenttriggersliquidordered-liquiddisorderedphaseseparationinmodelplasmamembranes.Proc.Natl.Acad.Sci.U.S.A.102,6320–6325.doi:10.1073/pnas.0405654102 PubMedAbstract|CrossRefFullText|GoogleScholar Heberle,F.A.,Marquardt,D.,Doktorova,M.,Geier,B.,Standaert,R.F.,Heftberger,P.,etal.(2016).Subnanometerstructureofanasymmetricmodelmembrane:interleafletcouplinginfluencesdomainproperties.Langmuir32,5195–5200.doi:10.1021/acs.langmuir.5b04562 PubMedAbstract|CrossRefFullText|GoogleScholar Hicks,A.M.,DeLong,C.J.,Thomas,M.J.,Samuel,M.,andCui,Z.(2006).Uniquemolecularsignaturesofglycerophospholipidspeciesindifferentrattissuesanalyzedbytandemmassspectrometry.Biochim.Biophys.Acta1761,1022–1029.doi:10.1016/j.bbalip.2006.05.010 PubMedAbstract|CrossRefFullText|GoogleScholar Hishikawa,D.,Hashidate,T.,Shimizu,T.,andShindou,H.(2014).Diversityandfunctionofmembraneglycerophospholipidsgeneratedbytheremodelingpathwayinmammaliancells.J.LipidRes.55,799–807.doi:10.1194/jlr.R046094 PubMedAbstract|CrossRefFullText|GoogleScholar Honigmann,A.,Sadeghi,S.,Keller,J.,Hell,S.W.,Eggeling,C.,andVink,R.(2014).Alipidboundactinmeshworkorganizesliquidphaseseparationinmodelmembranes.eLife3:e01671.doi:10.7554/eLife.01671 PubMedAbstract|CrossRefFullText|GoogleScholar Iyoshi,S.,Cheng,J.,Tatematsu,T.,Takatori,S.,Taki,M.,Yamamoto,Y.,etal.(2014).Asymmetricaldistributionofcholinephospholipidsrevealedbyclickchemistryandfreeze-fractureelectronmicroscopy.ACSChem.Biol.9,2217–2222.doi:10.1021/cb500558n PubMedAbstract|CrossRefFullText|GoogleScholar Ji,T.H.,andNicolson,G.L.(1974).Lectinbindingandperturbationoftheoutersurfaceofthecellmembraneinducesatransmembraneorganizationalalterationattheinnersurface.Proc.Natl.Acad.Sci.U.S.A.71,2212–2216.doi:10.1073/pnas.71.6.2212 PubMedAbstract|CrossRefFullText|GoogleScholar Kale,S.D.,Gu,B.,Capelluto,D.G.,Dou,D.,Feldman,E.,Rumore,A.,etal.(2010).ExternallipidPI3Pmediatesentryofeukaryoticpathogeneffectorsintoplantandanimalhostcells.Cell142,284–295.doi:10.1016/j.cell.2010.06.008 PubMedAbstract|CrossRefFullText|GoogleScholar Karnovsky,M.J.,Kleinfeld,A.M.,Hoover,R.L.,andKlausner,R.D.(1982).Theconceptoflipiddomainsinmembranes.J.CellBiol.94,1–6.doi:10.1083/jcb.94.1.1 PubMedAbstract|CrossRefFullText|GoogleScholar Kay,J.G.,Koivusalo,M.,Ma,X.,Wohland,T.,andGrinstein,S.(2012).Phosphatidylserinedynamicsincellularmembranes.Mol.Biol.Cell23,2198–2212.doi:10.1091/mbc.e11-11-0936 PubMedAbstract|CrossRefFullText Kiessling,V.,Crane,J.M.,andTamm,L.K.(2006).Transbilayereffectsofraft-likelipiddomainsinasymmetricplanarbilayersmeasuredbysinglemoleculetracking.Biophys.J.91,3313–3326.doi:10.1529/biophysj.106.091421 PubMedAbstract|CrossRefFullText|GoogleScholar Klotzsch,E.,andSchütz,G.J.(2013).Acriticalsurveyofmethodstodetectplasmamembranerafts.Philos.Trans.R.Soc.Lond.B.Biol.Sci.368:20120033.doi:10.1098/rstb.2012.0033 PubMedAbstract|CrossRefFullText|GoogleScholar Klymchenko,A.S.,andKreder,R.(2014).Fluorescentprobesforlipidrafts:frommodelmembranestolivingcells.Chem.Biol.21,97–113.doi:10.1016/j.chembiol.2013.11.009 PubMedAbstract|CrossRefFullText|GoogleScholar Koopman,G.,Reutelingsperger,C.P.,Kuijten,G.A.,Keehnen,R.M.,Pals,S.T.,andvanOers,M.H.(1994).AnnexinVforflowcytometricdetectionofphosphatidylserineexpressiononBcellsundergoingapoptosis.Blood84,1415–1420. PubMedAbstract|GoogleScholar Kuge,H.,Akahori,K.,Yagyu,K.,andHonke,K.(2014).Functionalcompartmentalizationoftheplasmamembraneofneuronsbyauniqueacylchaincompositionofphospholipids.J.Biol.Chem.289,26783–26793.doi:10.1074/jbc.M114.571075 PubMedAbstract|CrossRefFullText|GoogleScholar Kwik,J.,Boyle,S.,Fooksman,D.,Margolis,L.,Sheetz,M.P.,andEdidin,M.(2003).Membranecholesterol,lateralmobility,andthephosphatidylinositol4,5-bisphosphate-dependentorganizationofcellactin.Proc.Natl.Acad.Sci.U.S.A.100,13964–13969.doi:10.1073/pnas.2336102100 PubMedAbstract|CrossRefFullText|GoogleScholar Levental,I.,Grzybek,M.,andSimons,K.(2011).Raftdomainsofvariablepropertiesandcompositionsinplasmamembranevesicles.Proc.Natl.Acad.Sci.U.S.A.108,11411–11416.doi:10.1073/pnas.1105996108 PubMedAbstract|CrossRefFullText|GoogleScholar Lichtenberg,D.,Goni,F.M.,andHeerklotz,H.(2005).Detergent-resistantmembranesshouldnotbeidentifiedwithmembranerafts.TrendsBiochem.Sci.30,430–436.doi:10.1016/j.tibs.2005.06.004 PubMedAbstract|CrossRefFullText|GoogleScholar Lin,Q.,andLondon,E.(2015).Orderedraftdomainsinducedbyouterleafletsphingomyelinincholesterol-richasymmetricvesicles.Biophys.J.108,2212–2222.doi:10.1016/j.bpj.2015.03.056 PubMedAbstract|CrossRefFullText|GoogleScholar Lindfors,K.,Kalkbrenner,T.,Stoller,P.,andSandoghdar,V.(2004).Detectionandspectroscopyofgoldnanoparticlesusingsupercontinuumwhitelightconfocalmicroscopy.Phys.Rev.Lett.93:037401.doi:10.1103/PhysRevLett.93.037401 PubMedAbstract|CrossRefFullText|GoogleScholar Lingwood,C.A.(2011).Glycosphingolipidfunctions.ColdSpringHarb.Perspect.Biol.3:a004788.doi:10.1101/cshperspect.a004788 PubMedAbstract|CrossRefFullText|GoogleScholar Lingwood,D.,andSimons,K.(2010).Lipidraftsasamembrane-organizingprinciple.Science327,46–50.doi:10.1126/science.1174621 PubMedAbstract|CrossRefFullText|GoogleScholar Liu,A.P.,andFletcher,D.A.(2006).Actinpolymerizationservesasamembranedomainswitchinmodellipidbilayers.Biophys.J.91,4064–4070.doi:10.1529/biophysj.106.090852 PubMedAbstract|CrossRefFullText|GoogleScholar Lönnfors,M.,Doux,J.P.,Killian,J.A.,Nyholm,T.K.,andSlotte,J.P.(2011).Sterolshavehigheraffinityforsphingomyelinthanforphosphatidylcholinebilayersevenatequalacyl-chainorder.Biophys.J.100,2633–2641.doi:10.1016/j.bpj.2011.03.066 PubMedAbstract|CrossRefFullText|GoogleScholar Machta,B.B.,Papanikolaou,S.,Sethna,J.P.,andVeatch,S.L.(2011).Minimalmodelofplasmamembraneheterogeneityrequirescouplingcorticalactintocriticality.Biophys.J.100,1668–1677.doi:10.1016/j.bpj.2011.02.029 PubMedAbstract|CrossRefFullText|GoogleScholar Maekawa,M.,andFairn,G.D.(2015).Complementaryprobesrevealthatphosphatidylserineisrequiredforthepropertransbilayerdistributionofcholesterol.J.CellSci.128,1422–1433.doi:10.1242/jcs.164715 PubMedAbstract|CrossRefFullText|GoogleScholar Magee,A.I.,Adler,J.,andParmryd,I.(2005).Cold-inducedcoalescenceofT-cellplasmamembranemicrodomainsactivatessignallingpathways.J.CellSci.118,3141–3151.doi:10.1242/jcs.02442 PubMedAbstract|CrossRefFullText|GoogleScholar Magee,A.I.,andParmryd,I.(2003).Detergent-resistantmembranesandtheproteincompositionoflipidrafts.GenomeBiol.4:234.doi:10.1186/gb-2003-4-11-234 PubMedAbstract|CrossRefFullText|GoogleScholar Mahammad,S.,Dinic,J.,Adler,J.,andParmryd,I.(2010).LimitedcholesteroldepletioncausesaggregationofplasmamembranelipidraftsinducingTcellactivation.Biochim.Biophys.Acta1801,625–634.doi:10.1016/j.bbalip.2010.02.003 PubMedAbstract|CrossRefFullText|GoogleScholar Makuch,R.,Zasada,A.,Mabuchi,K.,Krauze,K.,Wang,C.L.,andDabrowska,R.(1997).Phosphatidylserineliposomescanbetetheredbycaldesmontoactinfilaments.Biophys.J.73,1607–1616.doi:10.1016/s0006-3495(97)78192-x PubMedAbstract|CrossRefFullText|GoogleScholar Marquardt,D.,Geier,B.,andPabst,G.(2015).Asymmetriclipidmembranes:towardsmorerealisticmodelsystems.Membranes5,180–196.doi:10.3390/membranes5020180 PubMedAbstract|CrossRefFullText|GoogleScholar May,S.(2009).Trans-monolayercouplingoffluiddomainsinbilayers.SoftMatter5,3148–3156.doi:10.1039/b901647c CrossRefFullText|GoogleScholar McLaughlin,S.,Wang,J.,Gambhir,A.,andMurray,D.(2002).PIP(2)andproteins:interactions,organization,andinformationflow.Annu.Rev.Biophys.Biomol.Struct.31,151–175.doi:10.1146/annurev.biophys.31.082901.134259 PubMedAbstract|CrossRefFullText|GoogleScholar Mehlhorn,I.E.,Florio,E.,Barber,K.R.,Lordo,C.,andGrant,C.W.(1988).Evidencethattrans-bilayerinterdigitationofglycosphingolipidlongchainfattyacidsmaybeageneralphenomenon.Biochim.Biophys.Acta939,151–159.doi:10.1016/0005-2736(88)90056-9 PubMedAbstract|CrossRefFullText|GoogleScholar Melkonian,K.A.,Ostermeyer,A.G.,Chen,J.Z.,Roth,M.G.,andBrown,D.A.(1999).Roleoflipidmodificationsintargetingproteinstodetergent-resistantmembranerafts.Manyraftproteinsareacylated,whilefewareprenylated.J.Biol.Chem.274,3910–3917.doi:10.1074/jbc.274.6.3910 PubMedAbstract|CrossRefFullText|GoogleScholar Mihailescu,M.,Vaswani,R.G.,Jardón-Valadez,E.,Castro-Román,F.,Freites,J.A.,Worcester,D.L.,etal.(2011).Acyl-chainmethyldistributionsofliquid-orderedand-disorderedmembranes.Biophys.J.100,1455–1462.doi:10.1016/j.bpj.2011.01.035 PubMedAbstract|CrossRefFullText|GoogleScholar Mondal,M.,Mesmin,B.,Mukherjee,S.,andMaxfield,F.R.(2009).SterolsaremainlyinthecytoplasmicleafletoftheplasmamembraneandtheendocyticrecyclingcompartmentinCHOcells.Mol.Biol.Cell20,581–588.doi:10.1091/mbc.E08-07-0785 PubMedAbstract|CrossRefFullText|GoogleScholar Mongrand,S.,Stanislas,T.,Bayer,E.M.,Lherminier,J.,andSimon-Plas,F.(2010).Membraneraftsinplantcells.TrendsPlantSci.15,656–663.doi:10.1016/j.tplants.2010.09.003 PubMedAbstract|CrossRefFullText|GoogleScholar Morrisett,J.D.,Pownall,H.J.,Plumlee,R.T.,Smith,L.C.,andZehner,Z.E.(1975).MultiplethermotropicphasetransitionsinEscherichiacolimembranesandmembranelipids.Acomparisonofresultsobtainedbynitroxylstearateparamagneticresonance,pyreneexcimerfluorescence,andenzymeactivitymeasurements.J.Biol.Chem.250,6969–6976. PubMedAbstract|GoogleScholar Morrow,M.R.,Singh,D.,Lu,D.,andGrant,C.W.(1995).Glycosphingolipidfattyacidarrangementinphospholipidbilayers:cholesteroleffects.Biophys.J.68,179–186.doi:10.1016/S0006-3495(95)80173-6 PubMedAbstract|CrossRefFullText|GoogleScholar Mouritsen,O.G.,andBagatolli,L.A.(2015).Lipiddomainsinmodelmembranes:abriefhistoricalperspective.EssaysBiochem.57,1–19.doi:10.1042/bse0570001 PubMedAbstract|CrossRefFullText|GoogleScholar Mueller,V.,Ringemann,C.,Honigmann,A.,Schwarzmann,G.,Medda,R.,Leutenegger,M.,etal.(2011).STEDnanoscopyrevealsmoleculardetailsofcholesterol-andcytoskeleton-modulatedlipidinteractionsinlivingcells.Biophys.J.101,1651–1660.doi:10.1016/j.bpj.2011.09.006 PubMedAbstract|CrossRefFullText|GoogleScholar Muguruma,M.,Nishimuta,S.,Tomisaka,Y.,Ito,T.,andMatsumura,S.(1995).Organizationofthefunctionaldomainsinmembranecytoskeletalproteintalin.J.Biochem.117,1036–1042. PubMedAbstract|GoogleScholar Murate,M.,Abe,M.,Kasahara,K.,Iwabuchi,K.,Umeda,M.,andKobayashi,T.(2015).Transbilayerdistributionoflipidsatnanoscale.J.CellSci.128,1627–1638.doi:10.1242/jcs.163105 PubMedAbstract|CrossRefFullText|GoogleScholar Nam,K.S.,Igarashi,K.,Umeda,M.,andInoue,K.(1990).Productionandcharacterizationofmonoclonalantibodiesthatspecificallybindtophosphatidylcholine.Biochim.Biophys.Acta1046,89–96.doi:10.1016/0005-2760(90)90098-I PubMedAbstract|CrossRefFullText|GoogleScholar Nickels,J.D.,Smith,J.C.,andCheng,X.(2015).Lateralorganization,bilayerasymmetry,andinter-leafletcouplingofbiologicalmembranes.Chem.Phys.Lipids192,87–99.doi:10.1016/j.chemphyslip.2015.07.012 PubMedAbstract|CrossRefFullText|GoogleScholar Nicolson,G.L.(2014).TheFluid-MosaicModelofMembraneStructure:stillrelevanttounderstandingthestructure,functionanddynamicsofbiologicalmembranesaftermorethan40years.Biochim.Biophys.Acta1838,1451–1466.doi:10.1016/j.bbamem.2013.10.019 PubMedAbstract|CrossRefFullText|GoogleScholar Nicolson,G.L.,andPainter,R.G.(1973).Anionicsitesofhumanerythrocytemembranes.II.Antispectrin-inducedtransmembraneaggregationofthebindingsitesforpositivelychargedcolloidalparticles.J.CellBiol.59,395–406.doi:10.1083/jcb.59.2.395 PubMedAbstract|CrossRefFullText|GoogleScholar Niemelä,P.S.,Hyvönen,M.T.,andVattulainen,I.(2006).Influenceofchainlengthandunsaturationonsphingomyelinbilayers.Biophys.J.90,851–863.doi:10.1529/biophysj.105.067371 PubMedAbstract|CrossRefFullText|GoogleScholar OpdenKamp,J.A.(1979).Lipidasymmetryinmembranes.Annu.Rev.Biochem.48,47–71.doi:10.1146/annurev.bi.48.070179.000403 PubMedAbstract|CrossRefFullText|GoogleScholar Owen,D.M.,Williamson,D.J.,Magenau,A.,andGaus,K.(2012).Sub-resolutionlipiddomainsexistintheplasmamembraneandregulateproteindiffusionanddistribution.Nat.Commun.3,1256.doi:10.1038/ncomms2273 PubMedAbstract|CrossRefFullText|GoogleScholar Pantano,D.A.,Moore,P.B.,Klein,M.L.,andDischer,D.E.(2011).Raftregistrationacrossbilayersinamolecularlydetailedmodel.SoftMatter7,8182–8191.doi:10.1039/c1sm05490b CrossRefFullText|GoogleScholar Parmryd,I.,Adler,J.,Patel,R.,andMagee,A.I.(2003).Imagingmetabolismofphosphatidylinositol4,5-bisphosphateinT-cellGM1-enricheddomainscontainingRasproteins.Exp.CellRes.285,27–38.doi:10.1016/S0014-4827(02)00048-4 PubMedAbstract|CrossRefFullText|GoogleScholar Parmryd,I.,andOnfelt,B.(2013).Consequencesofmembranetopography.FEBSJ.280,2775–2784.doi:10.1111/febs.12209 PubMedAbstract|CrossRefFullText|GoogleScholar PazRamos,A.,Lagüe,P.,Lamoureux,G.,andLafleur,M.(2016).Effectofsaturatedverylong-chainfattyacidsontheorganizationoflipidmembranes:astudycombining(2)HNMRspectroscopyandmoleculardynamicssimulations.J.Phys.Chem.B120,6951–6960.doi:10.1021/acs.jpcb.6b04958 PubMedAbstract|CrossRefFullText|GoogleScholar Perlmutter,J.D.,andSachs,J.N.(2011).Interleafletinteractionandasymmetryinphaseseparatedlipidbilayers:moleculardynamicssimulations.J.Am.Chem.Soc.133,6563–6577.doi:10.1021/ja106626r PubMedAbstract|CrossRefFullText|GoogleScholar Polley,A.,Mayor,S.,andRao,M.(2014).Bilayerregistryinamulticomponentasymmetricmembrane:dependenceonlipidcompositionandchainlength.J.Chem.Phys.141,064903.doi:10.1063/1.4892087 PubMedAbstract|CrossRefFullText|GoogleScholar Putzel,G.G.,andSchick,M.(2009).Theoryofraftformationbythecross-linkingofsaturatedorunsaturatedlipidsinmodellipidbilayers.Biophys.J.96,4935–4940.doi:10.1016/j.bpj.2009.04.019 PubMedAbstract|CrossRefFullText|GoogleScholar Putzel,G.G.,Uline,M.J.,Szleifer,I.,andSchick,M.(2011).Interleafletcouplinganddomainregistryinphase-separatedlipidbilayers.Biophys.J.100,996–1004.doi:10.1016/j.bpj.2011.01.021 PubMedAbstract|CrossRefFullText|GoogleScholar Raghupathy,R.,Anilkumar,A.A.,Polley,A.,Singh,P.P.,Yadav,M.,Johnson,C.,etal.(2015).Transbilayerlipidinteractionsmediatenanoclusteringoflipid-anchoredproteins.Cell161,581–594.doi:10.1016/j.cell.2015.03.048 PubMedAbstract|CrossRefFullText|GoogleScholar Rawyler,A.,vanderSchaft,P.H.,Roelofsen,B.,andOpdenKamp,J.A.(1985).PhospholipidlocalizationintheplasmamembraneofFrienderythroleukemiccellsandmouseerythrocytes.Biochemistry24,1777–1783.doi:10.1021/bi00328a031 PubMedAbstract|CrossRefFullText|GoogleScholar Renooij,W.,VanGolde,L.M.,Zwaal,R.F.,andVanDeenen,L.L.(1976).Topologicalasymmetryofphospholipidmetabolisminraterythrocytemembranes.Evidenceforflip-flopoflecithin.Eur.J.Biochem.61,53–58. PubMedAbstract|GoogleScholar Róg,T.,Orlowski,A.,Llorente,A.,Skotland,T.,Sylvänne,T.,Kauhanen,D.,etal.(2016).Interdigitationoflong-chainsphingomyelininducescouplingofmembraneleafletsinacholesteroldependentmanner.Biochim.Biophys.Acta1858,281–288.doi:10.1016/j.bbamem.2015.12.003 PubMedAbstract|CrossRefFullText|GoogleScholar Saarikangas,J.,Zhao,H.,andLappalainen,P.(2010).Regulationoftheactincytoskeleton-plasmamembraneinterplaybyphosphoinositides.Physiol.Rev.90,259–289.doi:10.1152/physrev.00036.2009 PubMedAbstract|CrossRefFullText|GoogleScholar Schram,V.,andThompson,T.E.(1995).Interdigitationdoesnotaffecttranslationaldiffusionoflipidsinliquidcrystallinebilayers.Biophys.J.69,2517–2520.doi:10.1016/S0006-3495(95)80122-0 PubMedAbstract|CrossRefFullText|GoogleScholar Schroeder,R.,London,E.,andBrown,D.(1994).Interactionsbetweensaturatedacylchainsconferdetergentresistanceonlipidsandglycosylphosphatidylinositol(GPI)-anchoredproteins:GPI-anchoredproteinsinliposomesandcellsshowsimilarbehavior.Proc.Natl.Acad.Sci.U.S.A.91,12130–12134.doi:10.1073/pnas.91.25.12130 PubMedAbstract|CrossRefFullText|GoogleScholar Sengupta,P.,Hammond,A.,Holowka,D.,andBaird,B.(2008).Structuraldeterminantsforpartitioningoflipidsandproteinsbetweencoexistingfluidphasesingiantplasmamembranevesicles.Biochim.Biophys.Acta1778,20–32.doi:10.1016/j.bbamem.2007.08.028 PubMedAbstract|CrossRefFullText|GoogleScholar Sens,P.,andTurner,M.S.(2011).Microphaseseparationinnonequilibriumbiomembranes.Phys.Rev.Lett.106:238101.doi:10.1103/PhysRevLett.106.238101 PubMedAbstract|CrossRefFullText|GoogleScholar Sevcsik,E.,andSchütz,G.J.(2016).Withorwithoutrafts?Alternativeviewsoncellmembranes.Bioessays38,129–139.doi:10.1002/bies.201500150 PubMedAbstract|CrossRefFullText|GoogleScholar Sezgin,E.,Can,F.B.,Schneider,F.,Clausen,M.P.,Galiani,S.,Stanly,T.A.,etal.(2016).Acomparativestudyonfluorescentcholesterolanalogsasversatilecellularreporters.J.LipidRes.57,299–309.doi:10.1194/jlr.M065326 PubMedAbstract|CrossRefFullText|GoogleScholar Sharma,P.,Varma,R.,Sarasij,R.C.,Ira,Gousset,K.,Krishnamoorthy,G.,etal.(2004).NanoscaleorganizationofmultipleGPI-anchoredproteinsinlivingcellmembranes.Cell116,577–589.doi:10.1016/S0092-8674(04)00167-9 PubMedAbstract|CrossRefFullText|GoogleScholar Simons,K.,andIkonen,E.(1997).Functionalraftsincellmembranes.Nature387,569–572. PubMedAbstract|GoogleScholar Simons,K.,andToomre,D.(2000).Lipidraftsandsignaltransduction.Nat.Rev.Mol.CellBiol.1,31–39.doi:10.1038/35036052 PubMedAbstract|CrossRefFullText|GoogleScholar Singer,S.J.,andNicolson,G.L.(1972).Thefluidmosaicmodelofthestructureofcellmembranes.Science175,720–731.doi:10.1126/science.175.4023.720 PubMedAbstract|CrossRefFullText Solanko,K.A.,Modzel,M.,Solanko,L.M.,andWüstner,D.(2015).Fluorescentsterolsandcholesterylestersasprobesforintracellularcholesteroltransport.LipidInsights8,95–114.doi:10.4137/LPI.S31617 PubMedAbstract|CrossRefFullText|GoogleScholar Spillane,K.M.,Ortega-Arroyo,J.,deWit,G.,Eggeling,C.,Ewers,H.,Wallace,M.I.,etal.(2014).High-speedsingle-particletrackingofGM1inmodelmembranesrevealsanomalousdiffusionduetointerleafletcouplingandmolecularpinning.NanoLett.14,5390–5397.doi:10.1021/nl502536u PubMedAbstract|CrossRefFullText|GoogleScholar Stace,C.L.,andKtistakis,N.T.(2006).Phosphatidicacid-andphosphatidylserine-bindingproteins.Biochim.Biophys.Acta1761,913–926.doi:10.1016/j.bbalip.2006.03.006 PubMedAbstract|CrossRefFullText|GoogleScholar Stevens,M.J.(2005).Complementarymatchingindomainformationwithinlipidbilayers.J.Am.Chem.Soc.127,15330–15331.doi:10.1021/ja043611q PubMedAbstract|CrossRefFullText|GoogleScholar Sun,H.,Chen,L.,Gao,L.,andFang,W.(2015).NanodomainformationofgangliosideGM1inlipidmembrane:effectsofcholeratoxin-mediatedcross-linking.Langmuir31,9105–9114.doi:10.1021/acs.langmuir.5b01866 PubMedAbstract|CrossRefFullText|GoogleScholar Suzuki,K.G.,Fujiwara,T.K.,Edidin,M.,andKusumi,A.(2007a).DynamicrecruitmentofphospholipaseCgammaattransientlyimmobilizedGPI-anchoredreceptorclustersinducesIP3-Ca2+signaling:single-moleculetrackingstudy2.J.CellBiol.177,731–742.doi:10.1083/jcb.200609175 PubMedAbstract|CrossRefFullText|GoogleScholar Suzuki,K.G.,Fujiwara,T.K.,Sanematsu,F.,Iino,R.,Edidin,M.,andKusumi,A.(2007b).GPI-anchoredreceptorclusterstransientlyrecruitLynandGalphafortemporaryclusterimmobilizationandLynactivation:single-moleculetrackingstudy1.J.CellBiol.177,717–730. PubMedAbstract|GoogleScholar Takatori,S.,Mesman,R.,andFujimoto,T.(2014).Microscopicmethodstoobservethedistributionoflipidsinthecellularmembrane.Biochemistry53,639–653.doi:10.1021/bi401598v PubMedAbstract|CrossRefFullText|GoogleScholar VanderSchaft,P.H.,Beaumelle,B.,Vial,H.,Roelofsen,B.,OpdenKamp,J.A.,andVanDeenen,L.L.(1987).PhospholipidorganizationinmonkeyerythrocytesuponPlasmodiumknowlesiinfection.Biochim.Biophys.Acta901,1–14.doi:10.1016/0005-2736(87)90250-1 PubMedAbstract|CrossRefFullText|GoogleScholar vanMeer,G.,Gahmberg,C.G.,OpdenKamp,J.A.,andvanDeenen,L.L.(1981).PhospholipiddistributioninhumanEn(a-)redcellmembraneswhichlackthemajorsialoglycoprotein,glycophorinA.FEBSLett.135,53–55. PubMedAbstract|GoogleScholar Veatch,S.L.,andKeller,S.L.(2005).Miscibilityphasediagramsofgiantvesiclescontainingsphingomyelin.Phys.Rev.Lett.94:148101.doi:10.1103/PhysRevLett.94.148101 PubMedAbstract|CrossRefFullText|GoogleScholar Verkleij,A.J.,Zwaal,R.F.,Roelofsen,B.,Comfurius,P.,Kastelijn,D.,andvanDeenen,L.L.(1973).Theasymmetricdistributionofphospholipidsinthehumanredcellmembrane.Acombinedstudyusingphospholipasesandfreeze-etchelectronmicroscopy.Biochim.Biophys.Acta323,178–193. PubMedAbstract|GoogleScholar Visco,I.,Chiantia,S.,andSchwille,P.(2014).Asymmetricsupportedlipidbilayerformationviamethyl-beta-cyclodextrinmediatedlipidexchange:influenceofasymmetryonlipiddynamicsandphasebehavior.Langmuir30,7475–7484.doi:10.1021/la500468r PubMedAbstract|CrossRefFullText|GoogleScholar vonHaller,P.D.,Donohoe,S.,Goodlett,D.R.,Aebersold,R.,andWatts,J.D.(2001).MassspectrometriccharacterizationofproteinsextractedfromJurkatTcelldetergent-resistantmembranedomains.Proteomics1,1010–1021.doi:10.1002/1615-9861(200108)1:8<1010::AID-PROT1010>3.0.CO;2-L PubMedAbstract|CrossRefFullText|GoogleScholar Wagner,A.J.,Loew,S.,andMay,S.(2007).Influenceofmonolayer-monolayercouplingonthephasebehaviorofafluidlipidbilayer.Biophys.J.93,4268–4277.doi:10.1529/biophysj.107.115675 PubMedAbstract|CrossRefFullText|GoogleScholar Wan,C.,Kiessling,V.,andTamm,L.K.(2008).Couplingofcholesterol-richlipidphasesinasymmetricbilayers.Biochemistry47,2190–2198.doi:10.1021/bi7021552 PubMedAbstract|CrossRefFullText|GoogleScholar Wang,T.Y.,andSilvius,J.R.(2001).Cholesteroldoesnotinducesegregationofliquid-ordereddomainsinbilayersmodelingtheinnerleafletoftheplasmamembrane.Biophys.J.81,2762–2773. PubMedAbstract|GoogleScholar Whiteley,N.M.,andBerg,H.C.(1974).Amidinationoftheouterandinnersurfacesofthehumanerythrocytemembrane.J.Mol.Biol.87,541–561.doi:10.1016/0022-2836(74)90103-X PubMedAbstract|CrossRefFullText|GoogleScholar Williamson,J.J.,andOlmsted,P.D.(2015).Registeredandantiregisteredphaseseparationofmixedamphiphilicbilayers.Biophys.J.108,1963–1976.doi:10.1016/j.bpj.2015.03.016 PubMedAbstract|CrossRefFullText|GoogleScholar Wood,R.,andHarlow,R.D.(1969).Structuralanalysesofratliverphosphoglycerides.Arch.Biochem.Biophys.135,272–281.doi:10.1016/0003-9861(69)90540-2 PubMedAbstract|CrossRefFullText|GoogleScholar Yabuuchi,H.,andO'Brien,J.S.(1968).Positionaldistributionoffattyacidsinglycerophosphatidesofbovinegraymatter.J.LipidRes.9,65–67. PubMedAbstract|GoogleScholar Yang,H.J.,Sugiura,Y.,Ikegami,K.,Konishi,Y.,andSetou,M.(2012).Axonalgradientofarachidonicacid-containingphosphatidylcholineanditsdependenceonactindynamics.J.Biol.Chem.287,5290–5300.doi:10.1074/jbc.m111.316877 PubMedAbstract|CrossRefFullText|GoogleScholar Yethiraj,A.,andWeisshaar,J.C.(2007).Whyarelipidraftsnotobservedinvivo?Biophys.J.93,3113–3119.doi:10.1529/biophysj.106.101931 PubMedAbstract|CrossRefFullText|GoogleScholar Zachowski,A.(1993).Phospholipidsinanimaleukaryoticmembranes:transverseasymmetryandmovement.Biochem.J.294(Pt1),1–14.doi:10.1042/bj2940001 PubMedAbstract|CrossRefFullText|GoogleScholar Zhang,J.,Jing,B.,Janout,V.,andRegen,S.L.(2007).Detectingcrosstalkbetweentwohalvesofaphospholipidbilayer.Langmuir23,8709–8712.doi:10.1021/la701503v PubMedAbstract|CrossRefFullText|GoogleScholar Zhang,J.,Jing,B.,Tokutake,N.,andRegen,S.L.(2004).Transbilayercomplementarityofphospholipids.Alookbeyondthefluidmosaicmodel.J.Am.Chem.Soc.126,10856–10857.doi:10.1021/ja046892a PubMedAbstract|CrossRefFullText|GoogleScholar Zhang,J.,Jing,B.,Tokutake,N.,andRegen,S.L.(2005).Transbilayercomplementarityofphospholipidsincholesterol-richmembranes.Biochemistry44,3598–3603.doi:10.1021/bi048258f PubMedAbstract|CrossRefFullText|GoogleScholar Zhou,Y.,Liang,H.,Rodkey,T.,Ariotti,N.,Parton,R.G.,andHancock,J.F.(2014).Signalintegrationbylipid-mediatedspatialcrosstalkbetweenRasnanoclusters.Mol.Cell.Biol.34,862–876.doi:10.1128/MCB.01227-13 PubMedAbstract|CrossRefFullText|GoogleScholar Keywords:membranenanodomains,molecularpinning,liquidordereddomains,interleafletcoupling,membraneasymmetry,lipidinterdigitation,phospholipiddistribution Citation:FujimotoTandParmrydI(2017)InterleafletCoupling,Pinning,andLeafletAsymmetry—MajorPlayersinPlasmaMembraneNanodomainFormation.Front.CellDev.Biol.4:155.doi:10.3389/fcell.2016.00155 Received:01October2016;Accepted:27December2016;Published:10January2017. Editedby:MarekCebecauer,J.HeyrovskyInstituteofPhysicalChemistry(ASCR),Czechia Reviewedby:ErdincSezgin,UniversityofOxford,UKHectorMartinez-Seara,InstituteofOrganicChemistryandBiochemistry(IOCB)oftheCAS,Czechia Copyright©2017FujimotoandParmryd.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)orlicensorarecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:IngelaParmryd,[email protected] COMMENTARY ORIGINALARTICLE Peoplealsolookedat SuggestaResearchTopic>
延伸文章資訊
- 1membrane | Definition, Structure, & Functions | Britannica
membrane, in biology, the thin layer that forms the outer boundary of a living cell or of an inte...
- 2There Is No Simple Model of the Plasma Membrane ... - Frontiers
The plasma membrane fully covers the cell surface. Its continuity is especially important for mem...
- 3cell membrane | Definition, Function, & Structure | Britannica
Cell membrane, thin membrane that surrounds every living cell. The cell membrane functions as a b...
- 4Structure of the plasma membrane (article) | Khan Academy
According to the fluid mosaic model, the plasma membrane is a mosaic of components—primarily, pho...
- 5Cell membrane - Wikipedia
The cell membrane is a biological membrane that separates the interior of all cells from the outs...