There Is No Simple Model of the Plasma Membrane ... - Frontiers

文章推薦指數: 80 %
投票人數:10人

The plasma membrane fully covers the cell surface. Its continuity is especially important for membrane receptors or effector molecules which ... ThisarticleispartoftheResearchTopic Molecularorganisationofmembranes:wherebiologymeetsbiophysics Viewall 12 Articles Articles ManuelPrieto InstitutoSuperiorTécnico,UniversidadedeLisboa,Portugal DylanM.Owen UniversityofBirmingham,UnitedKingdom RichardM.Epand McMasterUniversity,Canada Theeditorandreviewers'affiliationsarethelatestprovidedontheirLoopresearchprofilesandmaynotreflecttheirsituationatthetimeofreview. Abstract BasicStructureofCellMembranes IntrinsicPropertiesofCellMembranesEssentialforTheirFunction ExtrinsicFactorsInfluencingthePlasmaMembraneOrganisation PlasmaMembraneOrganisation–GeneralModelsandConcepts ThereisNoUniversalModelofthePlasmaMembraneLateralOrganisation AuthorContributions Funding ConflictofInterestStatement Acknowledgments References SuggestaResearchTopic> DownloadArticle DownloadPDF ReadCube EPUB XML(NLM) Supplementary Material Exportcitation EndNote ReferenceManager SimpleTEXTfile BibTex totalviews ViewArticleImpact SuggestaResearchTopic> SHAREON OpenSupplementalData REVIEWarticle Front.CellDev.Biol.,29September2016 |https://doi.org/10.3389/fcell.2016.00106 ThereIsNoSimpleModelofthePlasmaMembraneOrganization JorgeBernardinodelaSerna1,GerhardJ.Schütz2,ChristianEggeling3andMarekCebecauer4* 1ScienceandTechnologyFacilitiesCouncil,RutherfordAppletonLaboratory,CentralLaserFacility,ResearchComplexatHarwell,Harwell,UK 2InstituteofAppliedPhysics,TechnischeUniversitätWien,Wien,Austria 3MRCHumanImmunologyUnit,WeatherallInstituteofMolecularMedicine,UniversityofOxford,HeadleyWay,UK 4DepartmentofBiophysicalChemistry,J.HeyrovskyInstituteofPhysicalChemistry,CzechAcademyofSciences,Prague,CzechRepublic Eversincetechnologiesenabledthecharacterizationofeukaryoticplasmamembranes,heterogeneitiesinthedistributionsofitsconstituentswereobserved.Overtheyearsthisledtotheproposalofvariousmodelsdescribingtheplasmamembraneorganizationsuchaslipidshells,picket-and-fences,lipidrafts,orproteinislands,asaddressedinnumerouspublicationsandreviews.Insteadofemphasizingononemodelweinthisreviewgiveabriefoverviewovercurrentmodelsandhighlighthowcurrentexperimentalworkinoneortheotherwaydonotsupporttheexistenceofasingleoverarchingmodel.Instead,wehighlightthevastvarietyofmembranepropertiesandcomponents,theirinfluencesandimpacts.Webelievethathighlightingsuchcontroversialdiscoverieswillstimulateunbiasedresearchonplasmamembraneorganizationandfunctionality,leadingtoabetterunderstandingofthisessentialcellularstructure. Membranesareoneofthekeystructuresincellbiology.Besidesbeinginstrumentalincompartmentalizingandprotectingcells,theirroleasorganizingcentersfortaskssuchasmetabolismorsignalingisincreasinglyrecognized.Infact,amajorityofcellularprocessesareassociatedwithmembranes(Stryer,1995).Membranesprovideusefuldocksforcorrectlocalisationofproteinswhichisessentialfortheirfunction(MiosgeandZamoyska,2007;Greccoetal.,2011;HungandLink,2011).Importantly,inhumans,mislocalizationofmembraneproteinsleadstotheloss-of-functionand,frequently,candevelopintodiseases(Edwardsetal.,2000;Matsudaetal.,2008;HungandLink,2011;Schaefferetal.,2014).Nevertheless,thepresenceofproteinsataparticularmembraneisusuallynotsufficientfortheirfunction.Often,thenanoscopiclocalization,oligomerisationand/orclusteringofmembraneproteinscanaffecttheefficiencyofcellularprocesses(Cebecaueretal.,2010;Matthews,2012;Nussinov,2013;Garcia-Parajoetal.,2014).Membranes,thelipidenvironmentandmembranepropertiesingeneral,influencenanoscaleorganizationandfunctionofthesemolecules.Itis,therefore,importanttounderstandmoleculardetailsofmembranestructureandmechanismsresponsibleforitsdynamicsorganization. Here,wereviewmembraneproperties,modelsofmembraneorganizationandusefultechniquesforstudiesofmembraneorganizationanddynamics,withaspecialfocusontheplasmamembraneofhighereukaryotes(mammals).Ourspecificaimistore-emphasizecurrentlyomittedorunderestimatedbiophysicalprinciplesanddiscusstheirroleindynamicmembraneorganization.Weattempttoprovideacomprehensivedescriptionofmembranecomplexityandsuggestionshowtoavoidinterpretationofmembrane-associatedphenomenawithinthebordersofasingletheory.Asareaderwillsee,webelievethatthereisnouniversalmodeloftheplasmamembranedynamiclateralorganization.Thesemoregeneralissueswillbediscussedinthelastsection.First,letusstartwiththeverybasicstructureofmembranes. BasicStructureofCellMembranes Alipidbilayerformsthebasisofallcellularmembranes.Itisalamellarstructurewithahydrophobiccoreandapolarheadgroupregiononbothsides(Figure1A).Incells,itiscomposedofhundreds,ifnotthousands,ofdifferentphospholipidspecies.Thesedifferintheirpolarheadgroupmoietybutmainlyinthelengthandsaturationofacylchainsformingahydrophobiccoreofalipidbilayer.Otherlipidandfattyacidspeciesaddtothiscomplexity.Ofthose,sterols(cholesterolinmammals)arethemostabundantintheplasmamembraneandcanrepresentupto40%oftotallipid(vanMeeranddeKroon,2011).Cholesterolhasaspecialstructure(Figure1A)enablingstrongimpactonbasicmembranepropertiessuchasviscosityorinterleafletcoupling,asdescribedmultipletimesincomprehensivearticles(Ipsenetal.,1987;MouritsenandZuckermann,2004;MaxfieldandvanMeer,2010). FIGURE1 Figure1.Schematicillustrationofthebasicstructureoflipidbilayerandproteo-lipidicmembranes.(A)Cellmembranesarelamellarstructureswithahydrophobiccoreandapolarheadgroupspace.Asexamples,phospholipidsandcholesterolareshownwithalmostatomisticdetail(redandgreenboxes).(B)Membraneproteinscanintegrateintomembranes(i),butcanuselipidanchors(iiandiii)orperipherallyassociatewithmembranesviaelectrostaticinteractions(iv).(C)Proteinscanfurtherassociatewithmembranesviaprotein-proteininteractionsonthecytosolicside(v)orattheinterfacebetweentheplasmamembraneandtheextracellularmatrix(vi).Outerleafletlipids(vii)andextracellulardomainsofproteins(viii)areoftenglycosylated. Proteinsconstituteapproximatelyhalfofthetotalplasmamembranemass(DupuyandEngelman,2008).Wedistinguishintegralandperipheralmembraneproteinsdependingontheiranchorageintoalipidbilayerviatransmembranedomain(s)oralipidmoiety,respectively(Figure1B).Inaddition,someproteinsmayassociatewiththemembraneviaelectrostaticinteractionswithlipidheadgroups(Figure1B;McLaughlinandMurray,2005)oravarietyofprotein-proteinorprotein-glycaninteractions(Figure1C;Stryer,1995).Suchproteinsarecommonlytermedas“membrane-associated.”Extracellularpartsoflipidsandproteinsarefrequentlyglycosylated(Figure1C).Indeed,glycansformadensestructureattheoutersurfaceoftheplasmamembrane(BerrierandYamada,2007).Thismolecularcomplexityofmembraneshasprobablyevolvedtoserveasaselectivebarrierandorganizingcenterwithahighfidelityandrobustness(Cebecaueretal.,2010).Butwhatarethoseuniquepropertieswhichwereselectedintheprocessofevolutiontocontrolcriticalcellularprocesseswithsuchefficiency? IntrinsicPropertiesofCellMembranesEssentialforTheirFunction Earlydefinitions,ofwhichthe“fluidmosaicmodel”ofSingerandNicolson(SNmodelSingerandNicolson,1971,1972)isthebestknown,highlightedfluidityasoneofthemostcriticalmembranefeatures.Indeed,fluidityofmembranesprovidesimportantadvantageoverothercellularstructuressuchasthecytoskeletonorribonucleoproteins.Itformsthebasisforthehighlydynamiccharacterofmembrane-associated(bio)chemicalreactionsandothercellularprocesses.Membranefluidityenablesthemajorityofmoleculestodiffusefreelyoverlongdistancesandrotateorre-orientatetoadoptoptimalconformation.Membranescanbeconsideredastwo-dimensionalsolutions.Thistwo-dimensionalcharacteralsodistinguishesmembranesfromotherthree-dimensionalcellularsolutes(e.g.,thecytosol).Thefundamentalimportanceoffluidityis,forexample,underlinedbythefactthatcellsmodifythesaturationoftheirlipidacyl-chainstokeeptheirmembranesfluidwhenadaptingtotheenvironment,e.g.,differenttemperatures(FraenkelandHopf,1940;Budaetal.,1994). Althoughmembranesarefluid,theyhavehigherviscosity(Box1)thanthecytosol(Luby-Phelpsetal.,1993).Thishasadirectimpactonthemobilityofmembranemolecules.Membraneviscositycanbemodifiedbylipidcompositionorotherfactors,suchasthepresenceofproteinsorpoorlymobilestructures,andwillthusvaryoverspaceandtime. Box1.MembraneFluidity,ViscosityandMobility Viscosityisamacroscopicparameterdescribingthebehaviorofalarge,rigidsphereinaNewtonianfluid.Itsuseformembranesisimperfectandshouldbetreatedwithcare(ValeurandBerberan-Santos,2012;Olšinováetal.,2014).Membranesarenanoscopicstructureswith2Dcharacterandhighlyheterogeneouscompositionintermsofsizeandchemistry.Duetoalackofabetterparameter,weusetheterm“viscosity”todescribemembranepropertiessuchasmembranelateralcompressibilityandacylchainordering,whichinfluencethemobilityofmembranecomponents.Otherterms,e.g.,“microviscosity”or“rigidity”werealsousedinliteraturetocoverthesepropertiesinoneword(ShinitzkyandInbar,1976;KowalskaandCierniewski,1983;Gutetal.,1985;Sherbet,1989). Theterm“fluidity”isfrequentlyusedtoreplace“viscosity”forbiologicalmembranesorotherhighlyheterogeneousmaterials(ValeurandBerberan-Santos,2012).Weuseterm“fluidity”inthisworktodistinguishmembranesfromothercellularstructureswhichexhibitmuchhigherstability(e.g.,nucleoproteins),therebylimitingrapid,long-rangemobilityofassociatedcompounds. Effortstomeasureviscosityofcellularmembranesareassociatedwithserioustechnicaldifficulties(ValeurandBerberan-Santos,2012;Olšinováetal.,2014).Instead,measurementsofrotationalorlateraldiffusionweresuccessfullyappliedtocharacterizemembraneviscosity.Incellularmembranes,lateraldiffusionisfrequentlysubstitutedwiththeterm“mobility.”Mobilityofmembranemoleculescanbeinfluencedbymanydifferentfactors,suchas(i)membraneorderingor,intheotherterms,howdenselylipidsandproteinsarepackedinthemembrane(Kahyaetal.,2003),(ii)lateralpressureofthemembranewhichispartiallylinkedtoorderingbutalsomembranehydration(polarity)anddirectlyinfluencesbilayercompressibilityandelasticity(Marsh,1996;Cantor,1999),and(iii)macromolecularcrowding(Saxton,1987;GuigasandWeiss,2015).Mobilityofmembranecomponentsisfurtherinfluencedbyotherintrinsicandextrinsicfactorsasdescribedinthemaintext. Toillustratedramaticdifferencesinthemobilityofmoleculesinsyntheticandcellularenvironments,weprovideafewvaluesofdiffusioncoefficientsinTable1.Theseshouldbeconsideredasasimpleguidelineduetodifferencesintheprecisionwithwhichthesevaluesweremeasured.Wealsoprovidethetimescaleamoleculerequirestotraversethedistanceof20μm(longitudalsizeofHeLacells)byrandom(Brownian)2Dmotion.Thisshouldunderlinedramaticdifferencesinthemobilityofmoleculesinrealspace. AnotherpropertyemphasizedintheSNmodeliscontinuityoftheplasmamembrane(SingerandNicolson,1972).Theplasmamembranefullycoversthecellsurface.Itscontinuityisespeciallyimportantformembranereceptorsoreffectormoleculeswhichneedrapidlytore-localize,e.g.,whenacellischangingitsdirectionofchemotacticmobility(JanetopoulosandFirtel,2008).Continuityalsosupportsintermolecularinteractionsortheformationofmulti-molecularassemblieswithinoratthesurfaceofmembranes.Insomecells,membranecontinuityislimitedtotheapicalorbasalsideduetothepresenceoftightjunctionseliminatingfreemobilityofmembranemolecules(BaldaandMatter,2008).Wewilldiscussviscosityandcontinuity,andtheirimpactontheorganizationofmembranesinmoredetailfurtherinthetext. Almostallmoleculescaninteractandinfluenceeachotherincellularmembranes.Asaconsequence,coexistenceofmoleculesinmembraneshascooperativecharacter.CooperativityofmoleculeswasalreadymentionedforfluidcellularmembranesintheSNmodel(SingerandNicolson,1972)butseemstoberecentlyoverseen.Thispropertyhasadramaticimpactonexperiments,inwhichsystemicperturbanceofmembranes(e.g.,bychemicalorgenetictreatment)wasemployedtosupportspecificmodelsofmembraneorganization. Lipidmembranesundergointerleafletcoupling,meaningthatacylchainsoflipidsinoneleafletinterdigitateintothespaceoftheotherleaflet(Figure2A;Nickelsetal.,2015).Theoreticalpredictionssuggestthatinterleafletcouplingcancoordinatetheorganizationofmoleculesbetweenthetwoleaflets(Schmidtetal.,1978;Duzgunesetal.,1988;Merkeletal.,1989;Kiesslingetal.,2006;Raghupathyetal.,2015;WilliamsonandOlmsted,2015).Yet,Whiteandco-workersrecentlyprovidedanalternativeview(Mihailescuetal.,2011;Capponietal.,2016).Theydonotnegatetheexistenceofstrongcouplingbetweenthetwoleafletsoflipidbilayerbutobservednodirectcomplementaritybetweentheoppositeacylchains(Capponietal.,2016).Cholesterol,whichwaspredictedtointensifyinterleafletcouplinginmembranelipiddomains,wasfoundtoreducethelevelofacyl-chaininterdigitation(Mihailescuetal.,2011).Theseworksindicatethatweneedmoreexperimentaldatainordertobetterunderstandtheeffectofinterleafletcouplinginlipidbilayers. FIGURE2 Figure2.Schematicillustrationsoftheselectedintrinsicmembraneproperties:(A)Interleafletcoupling[interdigitatinglipidacylchainsingreen-gray;zoom:interdigitatingethylgroupsofupper(green)andlower(red)leaflets];(B)Asymmetricdistributionoflipidsandions[righthand-side:color-codingoflipidspecies];(C)Negativelychargedlipids(yellow)oftheplasmamembraneinnerleaflet[fortheassociationofproteinswithbasic-richdomains(lightgreen)];(D)Lipidself-assemblies(pink);(E)Hydrophobicmismatch(purple);(F)Protein-lipidinteractions[*sphingolipid-and**cholesterol-bindingpockets]. Theplasmamembraneofeukaryoticcellsisasymmetric(Figure2B)intermsoflipidandsurfaceioncomposition,aswellasthepresenceofspecificproteins(RothmanandLenard,1977;vanMeeretal.,2008).Thelipidasymmetryismaintainedbyflippasesandotherlipidtranslocatingortransportproteins(Canagarajahetal.,2008;Devauxetal.,2008).Chemicalasymmetry,agradientofions,drivesanumberofvitalcellularprocesses(e.g.,generationofchemicalenergyandmetabolism).Ontheotherhand,lipidasymmetryfurtheraddstothediversityandcomplexityofcellularcompartments,therebyhelpingtooptimizecellularprocesses.Forexample,negativelychargedlipidheadgroupsintheinnerleafletprovidethebindingsurfaceforproteinswithspecificbindingdomains(Figure2C;McLaughlinandMurray,2005).Thiscancauseproteinrelocalisationoftenleadingtotheinitiationofsignalingevents(Yeungetal.,2008).Inaddition,chemicalasymmetryandthepresenceofionsinducesheterogeneousdistributionoflipids,atleastinsimulationsandinmodelsystems(Váchaetal.,2009;Jurkiewiczetal.,2012).Whetherthiseffectcontributestotheorganizationofplasmamembraneinlivingcellsisexperimentallydifficulttotest;anasymmetricmembraneisindispensableforcellviability.Atthesametime,theformationofasymmetricmodelmembranesinvitroisaratherdelicateprocessandwassuccessfullyperformedonlyinafewcasesinpast(Kiesslingetal.,2006;CollinsandKeller,2008;Chiantiaetal.,2011).Therefore,datademonstratinglateral(re)organizationduetomembraneasymmetryarestillrare. Eventhoughlipidsinteractonlyweakly,preferentialself-assembliesofcertainlipidspeciesorconformations(Figure2D)weredemonstratedinmodellipidmixtures(Björkbometal.,2010;Ivankinetal.,2010).Undercertaincircumstances,lipidself-assemblingmayextensivelyreducemiscibilityofitsmolecules,i.e.,generatephysico-chemicalheterogeneities.Awell-knownexampleoflipidself-assemblyandsegregationistheformationofseparatedlipidphasesinvesiclescomposedoftwoormorelipidspecieswithdifferentmeltingpoints(BagatolliandGratton,1999;Korlachetal.,1999;BernardinodelaSernaetal.,2004;VeatchandKeller,2005).Importantly,lipidsarepronetophaseseparationormiscibilitytransitionsalsoincellmembrane-derivedvesiclesandblebs,aswellasartificialvesiclesgeneratedfromlipidsextractsandfromnativemembranes(BernardinodelaSernaetal.,2004;Baumgartetal.,2007;Veatchetal.,2008).Alltheseobservationswereachievedusingequilibratedmembranes;however,cellsarenon-equilibriumsystems(Stryer,1995).Indeed,nomiscibilityphasetransitionswereobservedinlivingcellsoverawiderangeoftemperatures(Leeetal.,2015).Putativeimpactoflipidself-assemblyandorderedlipidmembranesoncellmembranesisdiscussedinthesection“Plasmamembraneorganization–generalmodelsandconcepts.” Hydrophobicthicknessofalipidbilayerisdefinedmainlybythelengthandsaturationofacylchainsandthepresenceofsterols.Bilayerlipidsinteractnon-specificallyandtransientlywithtransmembranedomainsofintegralproteins(Marsh,1993).ImparityofthehydrophobicthicknessofthebilayerandthehydrophobiclengthofTMD(s)iscalledhydrophobicmismatch(Figure2E).Hydrophobicmismatchwasproposedtoinducemolecularaggregation/segregationinlipidbilayers,asdescribedinthemattressmodel(MouritsenandBloom,1984).Forexample,lipidswithlongerandmoresaturatedacylchainswillpreferentiallyresideintheannulusofhelicalTMDwithlonghydrophobiclength.Moreaboutthemattressmodelisdiscussedinthesection“Plasmamembraneorganization–generalmodelsandconcepts.” Lipidscanalsointeractwithproteinsinamorespecificmanner(Haberkantetal.,2008;FantiniandBarrantes,2013;Yeagle,2014).Severalproteinscarrylipid-bindingdomains(Ernstetal.,2010;Contrerasetal.,2011;FantiniandBarrantes,2013)towhichlipidsbindwithahigheraffinitycomparedtothelipidsofthefirstshellinteractingwithtransmembranedomainsnon-specifically.Suchprotein-lipidinteractions(Figure2F)canbehighlyspecificinawaythatlipidheadgroup,acylchainlengthanditssaturationdeterminetheaffinityofsuchinteractions(Contrerasetal.,2012).Specificprotein-lipidinteractionshavebeenshowntomodulateproteinstabilityanditsfunction(UittenbogaardandSmart,2000;Hansonetal.,2008;Contrerasetal.,2012)oraredirectlyinvolvedintransportoflipidsbetweensubcellularcompartments(Kwonetal.,2009).Butwhatistheirimpactonthelateralorganizationofplasmamembraneistodateunclear. Theabovementionedintrinsicpropertiescanbeascribedtoanyproteo-lipidmembranes,independentofwhethertheseareartificialorcellularstructures.Butwhatissospecificaboutmembranesoflivingcells?Can“clever”useoftheseintrinsicproperties,theirlocalamplification,reductionand/orcombinationleadtosuchlimitlessconcertofeventssuchasmetabolismandsignaltransduction?Oristhereaneedforextrinsicfactorstosupportthosebasalmembraneproperties? ExtrinsicFactorsInfluencingthePlasmaMembraneOrganisation Theplasmamembraneisbuilttointeractwithsurroundingstructuressuchascorticalactin,theextracellularmatrixoravarietyofligandmolecules.Theseformthebasisofextrinsicfactorswhichcanshapetheplasmamembrane. Weassignedprotein-proteininteractionstothesectionofextrinsicfactors,giventhefactthatextra-membranous(extracellularandcytosolic)domainsarethepredominantstructuresinvolvedinpersistentassociationsofproteins.Further,sincetheseinteractionsofteninvolvenon-membranousproteinscaffolds,webelievethatprotein-proteininteractionshave,tosomeextent,extrinsiccharacter. Incontrasttolipids,proteinscaninteractwithhighaffinityandthusformrelativelystablestructures(Figure3A)withinaseaoflipidmolecules.Indeed,theinteractionofproteinsisacommonprocessassociated,forexample,withleukocytesignalingorcellularadhesion,bothtakingplaceatthesurfaceofcells(DouglassandVale,2005;Rossieretal.,2012).Supramolecularcomplexesofproteinscanberelativelylargeandcanfurtherinteractwithothercellularcomponentssuchasthecytoskeleton,therebyformingproteinnetworkswhichcanhavelocalorsystemicimpactonmembranes(seebelow). FIGURE3 Figure3.Schematicillustrationsoftheselectedextrinsicmembraneproperties.(A)Protein-proteininteractions.Putativemembraneproteins(greenandred)formingheterodimerscanassembleintolargerclustersandbestabilizedbyfurtherinteractionwithcytosolicproteins(darkyellow).(B)Membranecurvature.Certainproteins(blueandgreen-brown)mayprefercurvedmembranes.Curvedmembranescanbestabilizede.g.,byBARproteins(lightyellow).(C)Intracellularcorticalactinskeleton.Actin-bindingproteins(darkyellowandorange)canassociatewithintegralmembraneproteinsandformlargerassemblieswithreducedmobility.(D)Extracellularglycocalyx.Interactionofcertainmembraneproteins(darkblueanddarkgreen)withtheextracellularmatrixmayleadtotheformationoflargerassemblieswithreducedmobility.(E)Endo-/exocytosis.Membranelipidsandproteinsarerapidlyendocytosed(red)orexocytosed(green). Morerecently,aconceptofproteinislandswaspresentedbasedonthefactthatproteinsweredetectedindistinctdomainsinterspacedwithprotein-freeareas,whenmembranepatcheswereimagedbyelectronmicroscopy(Wilsonetal.,2000;Lillemeieretal.,2006).Heterogeneousdistributionofproteinsinentitiesreminiscentofsuch“proteinislands”wereoftenfoundbysuper-resolutionfluorescenceimagingofthecellularplasmamembrane(forexampleSieberetal.,2007;Lillemeieretal.,2010;Letschertetal.,2014;Sakaetal.,2014;seealsoFigure4).However,itisnotyetclearwhethersuchentitiesarecreatedandstabilizedbyprotein-proteininteractionsorothermechanismsareinvolved.Theimpactoftheunderlyingactincytoskeletononproteinislandswasreportedinthepast(Wilsonetal.,2001;Lillemeieretal.,2006). FIGURE4 Figure4.Examplesofheterogenousdistributionofproteinsintheplasmamembraneofmammaliancells.(A)HeterogenousdistributionofMHCmoleculesasobservedonmurinelymphoidcellsin1967byCerottiniandBrunnerusingepifluorescencemicroscopy(AdaptedbypermissionfromJohnWileyandSonsLtd;(CerottiniandBrunner,1967).(B)MHCclusteringonmurineredbloodcellsasdetectedin1971byNicolsonandcolleaguesbyelectronmicroscopy(EM;scalebar:200nm;AdaptedbypermissionfromRUPress:©1971Nicolsonetal.,1971).(C)DistributionofindividualTCRmoleculesonactivatedprimaryhumanTcellsanalyzedbydSTORM(AdaptedbypermissionfromMacmillanPublishersLtd:NatureMethods(Rubin-Delanchyetal.,2015),copyright2015).Showing3×3μmarea.(D)DistributionofproteinsinmembranesheetsderivedfromaneuroendocrinecelllineasrevealedbySTEDmicroscopy[AdaptedbypermissionfromMacmillanPublishersLtd:NatureCommunications(Sakaetal.,2014),copyright2015].Scalebar:500nm. Certaincytosolicproteinscaninteractwithheadgroupsofselectedlipidspecies(e.g.,negativelychargedphosphatidylserinesandphosphoinositols)viaelectrostaticinteractions(Figure2C;McLaughlinandMurray,2005).Incells,bindingofproteinstochargedheadgroupsofinnerleafletlipidsiswell-documentedtocontrolimportantcellularprocesses,e.g.,phagocytosis(Botelhoetal.,2000).Inaddition,peripheralproteininteractionsattheinnerleafletoftheplasmamembranemodulatelocalizationandmobilityofchargedlipids,aswellassomeother,probablyassociated,molecules(Golebiewskaetal.,2008,2011;Yeungetal.,2008).Butwhethersuchperipheralinteractionscanmodulatethemobilityofothermembranecomponents(e.g.,attheouterleaflet)andhaveamoregeneralimpactontheplasmamembraneorganizationawaitsitsdirectproof. Duetomembraneplasticityandflexibity,certainlipidswithnon-conicalshape,e.g.,lysophospholipidsorphosphatidylethanolaminesfoundalsoincellmembranes,candeformtheplanarstructureoflipidbilayersbybending(Figure3B),therebychangingitscurvature(Šachletal.,2011).Similartoprotein-proteininteractions,curvatureisnotatypicalextrinsicfactor.Butincells,highlycurvedmembranesareprevalentlygeneratedbycurvature-formingproteins(e.g.,BAR-domaincontainingproteins)orcytoskeleton-inducedmechanicalforces(McMahonandGallop,2005;MattilaandLappalainen,2008).Boththeseprocessesareexternallyregulatedandrequireenergyand/orcofactors(Mimaetal.,2008;Frolovetal.,2010).Forexample,processesofendo/exocytosisareinitiatedbyprotein-inducedmembranebendingandATP/GTPhydrolysis(Vilmart-Seuwenetal.,1986;HansenandNichols,2009;Stachowiaketal.,2013).Theplasmamembranehasthecapacitytoformspecializedextensionswithhighcurvaturetoaccomplishsomeofitsspecificfunctions,e.g.,theformationofmicrovilliinpolarizedcellsfortheefficientuptakeofnutrients(Crawleyetal.,2014),orofmembranenanotubesfortheinter-cellularcommunication(Onfeltetal.,2004).Intheory,curvaturecanmodulatethedistributionofmembranemolecules(Bozicetal.,2006;WuandLiang,2014).Indeed,someproteinsaccumulateincurvedorfilamentousmembranesincells,butthemechanismsresponsibleforsuchdiversityareprobablybasedontargeteddeliveryofmoleculestothesespecificstructuresandpartialimpermeabilityofthebasalregionofsuchmembraneextensions,e.g.,ofcilia(TrimbleandGrinstein,2015).Inmodelmembranes,specificproteinsundergocurvature-drivensortingwhileothersdonot(Hatzakisetal.,2009;Aimonetal.,2014;Quemeneuretal.,2014).Specificintermolecularinteractionsbetweenlipidsandproteinsweresuggestedtoberesponsibleforsuchselectivity(Callan-Jonesetal.,2011),nonethelessitisstillunclearwhethercurvature-basedproteinandlipidsortingcanoccurinhighlydynamicmembranesofcells. Thecorticalactin(CA)skeleton(Figure3C)helpstokeepandmodulatetheshapeoflivingcells(Muraseetal.,2004).Inaddition,itisinvolvedintheregulationofmembranetraffickingandsignaling(forexampleSuzukietal.,2007;Jaqamanetal.,2011;Gowrishankaretal.,2012;Johnsonetal.,2012).TheimpactoftheCAontheorganizationoftheplasmamembraneiswelldescribedandformsthebasisofakeymodeldiscussedinthefollowingsection. Similarly,theglycocalyx(Figure3D),apartoftheextracellularmatrix(ECM)invertebrates,formsadensestructureatthesurfaceofeukaryoticcells(Stryer,1995).Glycosaminoglycansandassociatedglycoproteinsandproteoglycansoftheglycocalyxwereshowntomodulatesignalingbydirectassociationwithsurfacereceptors(Bassetal.,2007;Morganetal.,2007)orbybindingofligands(Hynes,2009).Inthisway,theglycocalyxandtheextracellularmatrixregulatetheshapeofmulticellularorganisms.Theglycocalyxwasalsopredictedtoinfluencethegeneralorganizationoftheplasmamembrane(Jacobsonetal.,1987).Indeed,glycosylatedextracellulardomainswereshowntomodulatetheorganization(AndersonandFambrough,1983)andmobility(WierandEdidin,1986;Zhangetal.,1991;Harteletal.,2015)ofmembraneproteins.Themolecularmechanismisstillunknownand,toourknowledge,hasnotbeenstudiedindetail. Cellskeeptheirmembranes“healthy”byarapidturnoverofitscomponents.Thisisachievedmainlybyvesiculartransport—endo-/exocytosis(Figure3E)—butalsobyalesswellunderstoodprotein-mediatedlipidtransportmechanism(s)(Lev,2012).Eachexo-/endocyticeventdeliversorremovesamaterialequivalenttoasurfaceareaof≈30.000nm2(estimatedfortheaveragediameterofexo-/endocyticvesiclestobe~100nm).Therefore,everysucheventcantransiently,butdramaticallychangethelocalmembranecompositionand,thereby,organization.Whereasnopreferredsitesofexo-/endocytosiswerereportedunderrestingconditions(Schmoranzeretal.,2000),stimulationofcellscanresultinmorelocalizedvesiculartransportandfusion/fissionhotspots(Stinchcombeetal.,2001;Gaffieldetal.,2009).Thiscanfurtheracceleratechangesintheplasmamembrane. Alternatively,membranecomponents(specificallylipids)canbedeliveredtotheplasmamembranebyspecificlipidtransporters(Raychaudhurietal.,2006;Voelker,2009;Tarlingetal.,2013).Thesemaytravelthroughthecytosolbydiffusionor,moreprobably,sucheventscantakeplaceatmembranecontactsitesbetweentheendoplasmicreticulum(ER)andplasmamembrane(seeFigure5inFernández-Busnadiegoetal.,2015).Thesesitesareresponsibleforthesynthesis,transportoflipidsbetweentheERandplasmamembrane(e.g.,byOshsteroltransportersRaychaudhurietal.,2006)andregulationoflipidmetabolismintheplasmamembrane(Stefanetal.,2011). Vesicularandprotein-mediatedtransportarethetwomainmechanismsresponsibleforarapidturnoverofmembranemolecules(estimatedtoexchangealmostallofitscomponentswithin1h),butotherroutessuchasfreediffusionofsmallmolecules(e.g.,glucose,ionsCortizoetal.,1990)orinfectionofcellsbyvirusesandotherpathogens(MazzonandMercer,2014)canfurthermodulatemembranecompositionandorganization. Activetransportofprotonsandions,togetherwithchemicalasymmetry,generatesanelectrostaticpotentialacrosstheplasmamembraneoflivingcells(HodgkinandHuxley,1952).Inadditiontothefunctionofthemembranepotentialinmetabolismandtransportofessentialmoleculesinandoutofcells,ithasanimpactonpropertiesofmodelandcellmembranes(O'Sheaetal.,1984;Grossmannetal.,2007;Hermanetal.,2015).Evenintheabsenceofions,asymmetricdistributionoflipidsinthebilayercangenerateatransmembranepotential(GurtovenkoandVattulainen,2007).Asaconsequence,itistechnicallychallengingtouncouplemembranepotentialandasymmetry.Ofnote,theavailabletheoreticalandexperimentalevidencerelatedtotheelectrostaticpotentialandtheorganizationofcellmembraneswasrecentlyreviewed(Malinskyetal.,2016). Ontheirown,extrinsicfactorsdonothavethecapabilitytocontrolallplasmamembraneprocesses.Hence,moreholistichypothesescombiningintrinsicandextrinsicfactorsareneeded.Inthefollowingsection,wewillbrieflydescribeamoregeneralconceptandfivemostpopularmodels.Areaderwillfindmoredetaileddescriptionsofthesemodelsandsomealternativeviewsinrecentlypublishedreviews(e.g.,LingwoodandSimons,2010;Owenetal.,2010;KlammtandLillemeier,2012;KlotzschandSchütz,2013;Nicolson,2014;RaoandMayor,2014;MouritsenandBagatolli,2015;SevcsikandSchütz,2016). PlasmaMembraneOrganisation–GeneralModelsandConcepts Letusbeginthissectionwithabriefinspectionofthemobilityofmembranecomponents.Thiswillindicatehowsimpleconceptshighlightingintrinsicproperties,namelyviscosityandcontinuitycan,tosomeextent,explaincertainpuzzlesrelatedtotheplasmamembraneorganizationandfunction.Measurementsoflateraldiffusionofmembranecomponentsoverthelastfewdecadesuncoveredmuchslowermolecularmobilityofmoleculesincellmembranescomparedtotheirmodelcounterparts(WierandEdidin,1986;Jacobsonetal.,1987;Lippincott-Schwartzetal.,2001).Onaverage,lipidtracers(e.g.,DiIorBODIPY-DPPE)diffuseaboutfourtimesfasterinmodelmembranesthanintheplasmamembraneoflivingcells(Box1;Table1).Thisdifferencecanbeexplainedbythecompositionalcomplexityoftheplasmamembrane.Thelargeproportionoflipidswithlongandsaturatedacylchainsandcholesterol(vanMeeretal.,2008)causeahigherrigidity(Sezginetal.,2015)and,thereby,viscosityofmembranes(Kuciketal.,1999).Inaddition,thepresenceofintegralmembraneproteinsfurtherincreasesthelocalviscosityintheirimmediateenvironment,whichreducesthemobilityofmembraneconstituentsingeneral(PetersandCherry,1982;ChazotteandHackenbrock,1988;Fricketal.,2007;Saxton,2008;Niemeläetal.,2010).Aplethoraoflipid-lipidandlipid-proteininteractions,heterogeneitiesingeneral,canfurthercontributetothisreductioninmobility. TABLE1 Table1.Examplesofdiffusioncoefficientsandtheirtranslationtothetimesneededtotraverseadistanceof20μm(e.g.,HeLacell). Therefore,intrinsicproperties,particularlyviscosity,canberesponsibleforthereducedlong-rangediffusionratesmeasuredforlipidsincellmembranes.Sincemembranesarecontinuous,allofitslipidcomponentsshouldbeinfluencedsimilarlyandequallythroughoutthewholearea.Forlipidswhichdonotcomplywiththisstatement,localizationandmobilityisregulatedbyotherfactorssuchasproteinsinteractingwithchargedlipidheadgroups,endocytosis,…etc.Thissimpleconceptworksforlipids.Buttheextremelyslowmobilityofmanyplasmamembraneproteins—one-to-twoordersofmagnitudelowercomparedtomodelmembranes–callsforamoreelaborateexplanation. FluidMosaicModel(SNModel;Figure5A).TheSNmodelinalargedetailsummarizestheunderstandingoftheplasmamembranecomposition,structureandthermodynamics45yearsago(SingerandNicolson,1972).Theemphasisisplacedonthefluidityofthemembraneandcoexistenceoflipidsandproteinsinthisessentialcellularstructures.Wehavealreadydescribedcrucialissuesofthismodelintheprevioussections.Here,wewouldliketounderlinethattheword“mosaic”intheSNmodelwasprimarilyusedtoaccentamixedcharacterofcellmembraneswherediverselipidsandproteinscoexistinasinglelamellarstructure.Later,thiswasfrequentlymisinterpretedashomogeneousorrandomdistributionofmolecules.Butheterogeneityofcellmembraneswasobservedandreportedasearlyasin1960s(Figures4A,B;CerottiniandBrunner,1967;Aokietal.,1969;Kourilskyetal.,1971;Nicolsonetal.,1971).Indeed,Nicolsondescribedputativemechanismsresponsibleforclusteringofproteins(orformationofdomains)inhispillarworkalreadyin1979(Nicolson,1979andFigure4therein).Theseassumptionsarestillvalidalmost40yearslater(Nicolson,2014). HydrodynamicModel(Figure5B).Themobilityoftransmembraneproteinsandtheiraggregatesincellmembranescanbedefinedbythehydrodynamicmodel(SaffmanandDelbrück,1975).Thismodelhypothesizesthatmoleculardiffusionratesdependmainlyonmembraneviscosityandthickness,andonlyweaklyonthesizeofproteinsandaggregates.Thismodelwaslaterupdatedmanytimes(e.g.,forarbitraryviscosityofmembranesandsolutes(Hughesetal.,1981)orasymmetricmembranesEvansandSackmann,1988),andexperimentallyconfirmedinmodelmembranes(e.g.,Ramaduraietal.,2009).However,itappliesonlyforfreelymovingmoleculesabsentofinteractionswithobjectswhichdonotco-diffuseasasingleentity.Themodelisfurtherlimitedbythedensityofobjectsinthemembraneandtheirlipidenvironment.First,thepresenceofslowlymovingobstaclesandmolecularcrowdingcanstronglyinfluencethemobilityofmembranecomponents(Saxton,2008;GuigasandWeiss,2015).Second,lipidsinthevicinityofTMDsofintegralmembraneproteins(annularlipidsorlipidshells)exhibitreducedlateraldiffusion(Meieretal.,1987;AndersonandJacobson,2002).ThisisprobablycausedbythefactthatTMDsformrelativelylargeandrigidstructureinthebilayer(Meieretal.,1987;Niemeläetal.,2010)butalsoduetotheroughsurfaceofTMDs.Therefore,thecomplexityofcellmembranesevidentlydoesnotallowtheapplicationofhydrodynamicmodeloritsvariantsasageneralmodeloftheplasmamembraneorganization.Nevertheless,itcanprovideausefulalternativetomorecomplexmodelsforlocalchanges(nanoscale;seebelow). Self-AssembliesofLipidsandOrderedLipidDomains(Figure5C).Observationofproteinclusters(DePierreandKarnovsky,1973),lipidsegregation(ShimshickandMcConnell,1973a,b;Klausneretal.,1980)andheterogeneousdistributionofcertainlipidsandproteinsbetweenapicalandbasalmembranesofpolarizedcells(vanMeerandSimons,1982)ledtothesuggestionsthatlipidsandtheirself-assembliescandeterminethefateofnewlysynthesizedorrecycledmembranemolecules(Karnovskyetal.,1982;SimonsandvanMeer,1988).ThisconceptwasmodifiedbySimonsandIkonen(SimonsandIkonen,1997)whoproposed“lipidrafts”astheplasmamembraneplatformsofhighmolecularorderenrichedincholesterolandsphingolipids,inwhichproteinsinvolvedinsignalingcanselectivelyinteractwitheffectormolecules.Inparallel,biochemicalanalysesrevealedinefficientsolubilisationofsome,butnotall,membraneproteinsandlipidsinmilddetergents,formingthebasisofdetergentresistantmembranes(DRMs).Throughouttheyears,theorderedlipidcharacterof“modellipidrafts”wasemphasizedandsuggestedtocorrespondtodomainspresentintheplasmamembraneofcells.Alltheseterms,lipidrafts,DRMsandorderedlipiddomains,wereusedinconsistentlyandfrequentlyledtomisinterpretationswhichwerehighlightedinrecentreviews(Cebecaueretal.,2009;Owenetal.,2010;Kraft,2013;SevcsikandSchütz,2016).Inaddition,thedatasupportingspontaneousformationoflipiddomainsinlivingcellsarerathercontroversialandinconclusive(e.g.,Eggelingetal.,2009;Brameshuberetal.,2010;Owenetal.,2012;Honigmannetal.,2014;Sevcsiketal.,2015).Ontheotherhand,anundisputablecapacityofcertainlipids(e.g.,gangliosides)toself-aggregate(Fujitaetal.,2007;Chenetal.,2008),anomalousdiffusionand/ordistributionoflipidsinhighlycomplexmixtures(Kusumietal.,2005;Eggelingetal.,2009;HeandMarguet,2011;Jeonetal.,2012)andspontaneousformationoffluidnanoclusters(vanZantenetal.,2010;Amaroetal.,2016)weredemonstratedinsilico,inmodelmembranesaswellasinlivingcells.Suchfluctuationscanpotentiallycontributetotheoverallheterogeneityoftheplasmamembraneandthepeculiarmobilityofcertainlipidsandproteinstherein.Yet,thedirectobservationofsuchanomalyremainschallengingduetherequiredspatialandtemporalresolutiontodisclosemolecular-scaleobjectsatsub-millisecondrates,albeitrecentadvancesinsuper-resolutionopticalmicroscopyandultrafastsingle-moleculetrackingindicateremediestothislimitation. MattressModel(Figure5D).Asmentionedabove,lipidsinthevicinityofTMDsexhibitabnormalbehavior(Lee,2004;Niemeläetal.,2010),particularlyincellmembraneswithalargevarietyoflipidspeciesandTMDs.TheaveragemembranehydrophobicthicknessincreasesbetweentheER,Golgiapparatusandplasmamembrane(Mitraetal.,2004).Duringproteintranslation,proteinswithlongTMDsareincorporatedintotherelativelythinmembraneoftheER,causinghydrophobicmismatch.LipidswithlongerandsaturatedacylchainscanformmetastableshellssurroundingsuchTMDs,therebygeneratingheterogeneityinthemembraneoftheER.Atalargerscale,hydrophobicmismatchwasproposedtoinducetheformationoflipid/proteindomainsalsointheplasmamembrane(MouritsenandBloom,1993;AndersonandJacobson,2002;Kaiseretal.,2011).Significantimpactofhydrophobicmismatchiswell-documentedforthesortingofproteinsincellmembranes(Munro,1995;Sharpeetal.,2010;Chumetal.,2016).Butwhethersimilar“sorting”oflipidsandproteinsduetohydrophobicmismatchcontributestothenanoscaleorganizationoftheplasmamembraneinlivingcellshassofarnotbeenexperimentallyproven,mainlyduetoaforementionedlimitationsonspatialandtemporalresolutionofpotentialdirectobservationmethods. CorticalActinSkeleton(Figure5E).Membrane-proximalpositioningoftheCAskeletonanditsdirectassociationwiththeplasmamembraneviaactin-bindingproteinsorcomplexesmakesitthefirst-handstructuretoinfluencethemobilityofplasmamembranemoleculesandtheirlateralorganization.Indeed,theactinskeletonwasdemonstratedtoaffectmembranemoleculesinnumerousworksemployingavarietyofexperimentalapproaches(e.g.,GolanandVeatch,1980;Sheetzetal.,1980;Tanketal.,1982;Fujiwaraetal.,2002;Ritchieetal.,2003;Muraseetal.,2004;Muelleretal.,2011;Andradeetal.,2015).TheeffectoftheCAskeletonistodatethemostacceptedmodelformembraneorganization,independentofwhetherwespeakaboutindirectstericalhindrance(picket-and-fencemodel;(Koppeletal.,1981;Jacobsonetal.,1984;SakoandKusumi,1995;Machtaetal.,2011)ordirectinteractionsofproteinswiththeCAskeleton(Saxton,1990;Sheetzetal.,2006;Muelleretal.,2011;RaoandMayor,2014).Itsundisputableimpactwasdescribedinmoredetailincurrentreviews(Kusumietal.,2010;RaoandMayor,2014).Ontheotherhand,theCAskeletonprovidesagoodexplanationformany,butprobablynotallmembrane-associatedphenomena(seebelow). FIGURE5 Figure5.Schematicillustrationsoftheplasmamembraneorganizationmodels.(A)Fluidmosaicmodel.Themembranesurfacewasartisticallydecoratedtoindicatenon-homogenousdistributionofmolecules.Coloredobjectsrepresentvariousspeciesofmembraneproteins,stringsofcoloredhexagonsillustrateglycosylationofproteinsandlipids.(B)Hydrodynamicmodel.Similarmobilityoflipidsandproteinsareindicatedbyorangeandpinktrajectories.Largeassemblies(redcircle)withsignificantlylargerradiuscanexhibitslowerdiffusion(dashedredtrajectory).(C)Lipidmembranedomains.Darkmembranepatchesindicatelipidself-assembliesanddifferentlipid(andprotein)composition.(D)Mattressmodel.DarkmembranepatchesindicateaccumulationoflipidspeciesduetoincreasedhydrophobiclengthofproteinTMDs.(E)Picket-and-fencemodel.AccumulationofproteinsaroundtheunderlyingCAskeletonandformationoffences(dashedblackline)whichmayrestrict“free”diffusionofnon-associatedproteins(red)toalimitedarea(redtrajectory).Forlong-distancemobility,proteinshaveto“hop”overthefence(yellowarrow-line)whichlimitstheirlong-rangediffusioncoefficient. ThereisNoUniversalModelofthePlasmaMembraneLateralOrganisation Modelslistedintheprevioussections,betterorworse,contributetotheoverallunderstandinghowcellspotentiallyorganizemoleculesintheirplasmamembrane.Someofthesemodelspassedthroughtheirgloriousperiods,inwhichalmostanyarticleassumedtheapplicabilityofthisoneparticularmechanismforthefunctionand/ororganizationofthestudiedmembranemolecule(s).Ahandfulofrecentexperimentalwork(e.g.,Kenworthyetal.,2004;Friszetal.,2013;Honigmannetal.,2014;Letschertetal.,2014;Sevcsiketal.,2015;Wilsonetal.,2015)andreviews(Kraft,2013;SevcsikandSchütz,2016)argueagainsttheseuniversaltheories.Improvementsintechnologyforobservingmembranestudieshavemoreandmorereducedtheaffectionforsuchasingle,universaltheory.Adynamicandcomplexplasmamembraneistheenvironmentwhereallmoleculesplayinconcerttoachievetheoptimalphysiologicaloutput. Asametaphor,onecanthinkofhumansociety.Similartocellmembranes,itishighlycomplexanddynamic,withactivitiesdifficulttoinvestigate.Asanexampleonecanconsiderclustering.“Clustering”occursinhumansocietyatthenanoscale(e.g.,families),mesoscale(e.g.,clubs,classesorothersmallinterestgroups),ormacroscale(e.g.,villages,cities,states).Theformationofsuch“clusters”dependsonintrinsicpropertieslikeaffectionoranimosity,thelocalorglobaleconomicsituation,butalsothehealthandmobilityoftheindividuals.Asananalogyforextrinsicparameterswemayconsidertheenvironmentalsituation(sunshine/rain,drought/flooding),localfactors(alpinelandscapevs.influenceofthesea),butalsotheinteractionwithother“clusters.”Asweknowfromexperience,socialsystemsmaydevelopratherstablephenotypesatthemacroscale(e.g.,thecurrentwesternsociety),whicharestillcharacterizedbyhighdynamicsatthenano—ormesoscale.Onthecontrary,thereareperiodsinhistory,inwhichnostablesituationwasreachedformanyyears.Ourpointis,thatitisvirtuallyimpossibletopredictthebehaviorofalargesocietyfromsimplemodels,eveniftheintrinsicandextrinsicparametersarewell-knownathighdetail.Or,ifwereturntothetopicofcellmembranes:currently,itseemsimpossibletoexplaintheplasmamembraneorganizationbasedonindividualmodelsdescribedintheprevioussection.Hence,futurechallengeswillincludetheclevercombinationofthisprinciplemodelsintomoreholisticmeta-modelstoincreasetheirpredictivepower.Or,intheotherwords,webelievethereisnosimple,universalmechanismunderlyingtheorganizationoftheplasmamembraneofmammaliancells. Whywebelievethisisso?Andwhataretheconsequences? Startingwiththefirstquestion,onehastolookatthesectionswiththelistsofintrinsicandextrinsicfactorsinfluencingthebehaviorofmoleculesintheplasmamembrane.Both,intrinsicandextrinsicfactorsarehighlyinterconnectedandcanoccuratthesametimeor,moreprobably,inrapid,sequentialevents.Ifintrinsicpropertiesshouldbeconsideredasrathergeneralfactors,towhichallmoleculesmustadapt,extrinsicfactorsmayhavemorespecificeffects.Tuningofintrinsicproperties(e.g.,fluidityorviscosity)requiressignificantchangesinmolecularcomposition.Thiscanrapidlyoccurlocally(atthenanoscale)andtransiently(sub-second),butwouldrequiresubstantialcostsofenergytoinducelarge-scaleandmorestablechanges.Onthecontrary,extrinsicfactors(e.g.,theCAskeletonorglycocalyx)canaffectlargersurfaceareasforlongerperiodsoftimewithhigherefficiency.Itis,therefore,probablyacombinationofthesefactorswhichregulatesbehaviorofmoleculesintheplasmamembraneatafullspectrumofspatialandtemporalscales. Thisbringsustothesecondquestionabouttheconsequencesofthenon-existenceofomnipotent,universalmodelapplicabletoallplasmamembranecomponentsandevents.First,wheninterpretingdataacquiredduringtheanalysisofcellmembranes,oneshouldnotignoreintrinsicmembraneproperties.Eventhoughlessvisible(detectable),theseformthebasisofmembraneorganizationandfunction.Extrinsicfactorsareimportantbutmaybeconsequential.Inordertofullyunderstandmembrane-associatedprocessesandavoidundesirablebordersofasingletheory,acarefulanalysisofsequentialevents,whichmayleadtotheobservedeffect,needstobeperformed(Box2). Box2.SequentialEventsInfluencingthePlasmaMembraneOrganisation Imagingtechniquesareexcellenttoolstomonitorchangesoftheplasmamembraneorganization.Highdetailscanbeexploredusingcurrentadvancedtechniques(Eggeling,2015).Butallmethodssufferfromthefactthatthepreeminentfeature(e.g.,CAskeletonreorganization)canhideoneormorelesswelldetectableevents(e.g.,changesinlocalviscosity)accompanyinganobservedprocess.Insomecases,theseundetectablefluctuationsmaybethedeterminingfactorsortriggersofatransformationprocess. Toillustratetheconsequencesoftheabovementionedlimitation(s),let'simagineaputativemembrane-associatedprocess:Aligandbindstoitsreceptorwhichisfollowedbyreceptoroligomerisationornanoscaleclustering.Suchincreasedproteindensitycausesincreasedmembraneviscositywhich,inturn,reducesmobilityofmoleculesinthevicinityofacluster(PetersandCherry,1982;Niemeläetal.,2010).Asaconsequence,anactin-bindingproteincancollidewithareceptorcluster,enhancelow-affinityinteractionsbycrosslinkingclustercomponentsandtriggerCAskeletonreorganization.Itisthelasteventwhichwillstabilizetheoverallstructureand,atthesametime,itisthebestdetectablefeatureofthisimaginaryprocess.ButtheinterpretationthattheCAskeletonisresponsiblefortheobservedchangesisonlypartofthestory.Inthiscase,theabilitytodetectsmall-scaleviscosityfluctuationswouldhelptobetterunderstandsuchprocess.Unfortunately,atpresent,suchtoolsarenotavailableforlivingcells. Anotherconcernwiththeinterpretationofmembrane-focuseddataisthesystemicuseofchemicalandgenetictoolsasaproofofoneortheothermodeloftheplasmamembraneorganization.Specificside-effectsofsomeofthesetreatments(e.g.,detergents,methyl-β-cyclodextrin,cytochalasinDortemperaturechanges)havebeendescribedinpast(AilenbergandSilverman,2003;Lichtenbergetal.,2005;Mageeetal.,2005;Shvartsmanetal.,2006;ZidovetzkiandLevitan,2007).Duetothefluidityandcooperativity,systemictreatment(both,chemicalandgenetic)willofteninfluencethebehaviorofmany(ifnotall)moleculespresentinorassociatedwiththemembrane,insteadofonlyspecificones.Inaddition,theprocedureofobservingthesystemmaypotentiallyintroduceartifacts,forexamplelabelsorintenselightsourcesemployedinfluorescencemicroscopy(Sezginetal.,2012;MagidsonandKhodjakov,2013).Therefore,employmentoftreatmentsorobservationtechniquesrequirescautiousinterpretationandexperimentsperformedwithextensivenumberofcontrols.Leavingspaceforalternativeinterpretationsandemphasisonpossibleside-effectsshouldbeagoodpracticeinthiskindofworks. Insummary,weprovidehereacomprehensivelistofmembranefeaturesandperipheralstructureswhichwerepreviouslydemonstratedorproposedtocontrollateralmobilityandorganizationoftheplasmamembraneinmammaliancells.Wealsoofferalternativeviewshowtointerpretresultsmeasuredontheplasmamembraneoflivingcells.Were-emphasizetheimpactoftheintrinsicmembranepropertieswhichwerediscoveredandcharacterizedmorethan20yearsagobutweresometimesoverlookedinmorerecentworks.Wefinishwiththehopethatdevelopmentofnovelimprovedobservationtechniquessuchasfastsingle-moleculetracking(Ritchieetal.,2005;Ortega-ArroyoandKukura,2012),TOCSSL(Brameshuberetal.,2010),STED-FCS(Eggelingetal.,2009;Muelleretal.,2013;Eggeling,2015),iMSDorrelatedimagecorrelationtechniques(Hebertetal.,2005;Digmanetal.,2009;DiRienzoetal.,2013),willberewardedwithamorepreciseinformationaboutplayersresponsiblefortheuniquenessoftheplasmamembrane.Incasetheimprovementswillbestillinsufficient,weshouldprobablyoverpassthebarrier(obstacle)betweenresearchersstudyingmammaliancellsandthosefocusedonyeastsandplants.Theseorganismsownmembraneswhichbehavemuchfriendlierontemporalscalecomparedtotheplasmamembraneofmammaliancells.Suchmembranesarehighlyheterogeneousandcanbeimagedwiththeuseofexistingmethods(Malínskáetal.,2003;Spiraetal.,2012).CellcycleregulationandRNAinterferencewerealsodiscoveredinyeastandplants. AuthorContributions JBdlS,GS,CE,andMCdefinedthetopicandwrotethemanuscript. Funding ThisworkwasfundedbyCzechScienceFoundation(15-06989S;MC),theMedicalResearchCouncil(MRC,grantnumberMC_UU_12010/unitprogrammesG0902418andMC_UU_12025;CE),MarieCurieCareerIntegrationGrant(JBdlS),andtheAustrianScienceFund(FWFprojectsP26337-B21,P25730-B21). ConflictofInterestStatement Theauthorsdeclarethattheresearchwasconductedintheabsenceofanycommercialorfinancialrelationshipsthatcouldbeconstruedasapotentialconflictofinterest. Acknowledgments WewouldliketothankMarieOlsinova,DanielaGlatzova,TonyMagee,MartinHof,LukaszCwiklik,PiotrJurkiewicz,andTomasChumforcriticaldiscussionswhichledtowritingofthisarticle. References Ailenberg,M.,andSilverman,M.(2003).CytochalasinDdisruptionofactinfilamentsin3T3cellsproducesananti-apoptoticresponsebyactivatinggelatinaseAextracellularlyandinitiatingintracellularsurvivalsignals.Biochim.Biophys.Acta1593,249–258.doi:10.1016/S0167-4889(02)00395-6 PubMedAbstract|CrossRefFullText|GoogleScholar Aimon,S.,Callan-Jones,A.,Berthaud,A.,Pinot,M.,Toombes,G.E.,andBassereau,P.(2014).Membraneshapemodulatestransmembraneproteindistribution.Dev.Cell28,212–218.doi:10.1016/j.devcel.2013.12.012 PubMedAbstract|CrossRefFullText|GoogleScholar Amaro,M.,Šachl,R.,Aydogan,G.,Mikhalyov,II.,Vácha,R.,andHof,M.(2016).GM1Gangliosideinhibitsβ-AmyloidoligomerizationinducedbySphingomyelin.Angew.Chem.55,9411–9415.doi:10.1002/anie.201603178 PubMedAbstract|CrossRefFullText|GoogleScholar Anderson,M.J.,andFambrough,D.M.(1983).Aggregatesofacetylcholinereceptorsareassociatedwithplaquesofabasallaminaheparansulfateproteoglycanonthesurfaceofskeletalmusclefibers.J.CellBiol.97(5Pt1),1396–1411.doi:10.1083/jcb.97.5.1396 PubMedAbstract|CrossRefFullText|GoogleScholar Anderson,R.G.,andJacobson,K.(2002).Aroleforlipidshellsintargetingproteinstocaveolae,rafts,andotherlipiddomains.Science296,1821–1825.doi:10.1126/science.1068886 PubMedAbstract|CrossRefFullText|GoogleScholar Andrade,D.M.,Clausen,M.P.,Keller,J.,Mueller,V.,Wu,C.,Bear,J.E.,etal.(2015).Corticalactinnetworksinducespatio-temporalconfinementofphospholipidsintheplasmamembrane–aminimallyinvasiveinvestigationbySTED-FCS.Sci.Rep.5:11454.doi:10.1038/srep11454 PubMedAbstract|CrossRefFullText|GoogleScholar Aoki,T.,Hammerling,U.,DeHarven,E.,Boyse,E.A.,andOld,L.J.(1969).Antigenicstructureofcellsurfaces.AnimmunoferritinstudyoftheoccurrenceandtopographyofH-2′theta,andTLalloantigensonmousecells.J.Exp.Med.130,979–1001.doi:10.1084/jem.130.5.979 PubMedAbstract|CrossRefFullText|GoogleScholar Bagatolli,L.A.,andGratton,E.(1999).Two-photonfluorescencemicroscopyobservationofshapechangesatthephasetransitioninphospholipidgiantunilamellarvesicles.Biophys.J.77,2090–2101.doi:10.1016/S0006-3495(99)77050-5 PubMedAbstract|CrossRefFullText|GoogleScholar Balda,M.S.,andMatter,K.(2008).Tightjunctionsataglance.J.CellSci.121(Pt22),3677–3682.doi:10.1242/jcs.023887 PubMedAbstract|CrossRefFullText|GoogleScholar Bass,M.D.,Roach,K.A.,Morgan,M.R.,Mostafavi-Pour,Z.,Schoen,T.,Muramatsu,T.,etal.(2007).Syndecan-4-dependentRac1regulationdeterminesdirectionalmigrationinresponsetotheextracellularmatrix.J.CellBiol.177,527–538.doi:10.1083/jcb.200610076 PubMedAbstract|CrossRefFullText|GoogleScholar Baumgart,T.,Hammond,A.T.,Sengupta,P.,Hess,S.T.,Holowka,D.A.,Baird,B.A.,etal.(2007).Large-scalefluid/fluidphaseseparationofproteinsandlipidsingiantplasmamembranevesicles.Proc.Natl.Acad.Sci.U.S.A.104,3165–3170.doi:10.1073/pnas.0611357104 PubMedAbstract|CrossRefFullText|GoogleScholar BernardinodelaSerna,J.,Perez-Gil,J.,Simonsen,A.C.,andBagatolli,L.A.(2004).Cholesterolrules:directobservationofthecoexistenceoftwofluidphasesinnativepulmonarysurfactantmembranesatphysiologicaltemperatures.J.Biol.Chem.279,40715–40722.doi:10.1074/jbc.M404648200 PubMedAbstract|CrossRefFullText|GoogleScholar Berrier,A.L.,andYamada,K.M.(2007).Cell-matrixadhesion.J.Cell.Physiol.213,565–573.doi:10.1002/jcp.21237 PubMedAbstract|CrossRefFullText|GoogleScholar Björkbom,A.,Róg,T.,Kaszuba,K.,Kurita,M.,Yamaguchi,S.,Lönnfors,M.,etal.(2010).Effectofsphingomyelinheadgroupsizeonmolecularpropertiesandinteractionswithcholesterol.Biophys.J.99,3300–3308.doi:10.1016/j.bpj.2010.09.049 PubMedAbstract|CrossRefFullText|GoogleScholar Botelho,R.J.,Teruel,M.,Dierckman,R.,Anderson,R.,Wells,A.,York,J.D.,etal.(2000).Localizedbiphasicchangesinphosphatidylinositol-4,5-bisphosphateatsitesofphagocytosis.J.CellBiol.151,1353–1368.doi:10.1083/jcb.151.7.1353 PubMedAbstract|CrossRefFullText|GoogleScholar Bozic,B.,Kralj-Iglic,V.,andSvetina,S.(2006).Couplingbetweenvesicleshapeandlateraldistributionofmobilemembraneinclusions.Phys.Rev.EStat.Nonlin.SoftMatterPhys.73(4Pt1):041915.doi:10.1103/PhysRevE.73.041915 PubMedAbstract|CrossRefFullText|GoogleScholar Brameshuber,M.,Weghuber,J.,Ruprecht,V.,Gombos,I.,Horváth,I.,Vigh,L.,etal.(2010).Imagingofmobilelong-livednanoplatformsinthelivecellplasmamembrane.J.Biol.Chem.285,41765–41771.doi:10.1074/jbc.M110.182121 PubMedAbstract|CrossRefFullText|GoogleScholar Buda,C.,Dey,I.,Balogh,N.,Horvath,L.I.,Maderspach,K.,Juhasz,M.,etal.(1994).Structuralorderofmembranesandcompositionofphospholipidsinfishbrain-cellsduringthermalacclimatization.Proc.Natl.Acad.Sci.U.S.A.91,8234–8238.doi:10.1073/pnas.91.17.8234 PubMedAbstract|CrossRefFullText|GoogleScholar Callan-Jones,A.,Sorre,B.,andBassereau,P.(2011).Curvature-drivenlipidsortinginbiomembranes.ColdSpringHarb.Perspect.Biol.3:a004648.doi:10.1101/cshperspect.a004648 PubMedAbstract|CrossRefFullText|GoogleScholar Canagarajah,B.J.,Hummer,G.,Prinz,W.A.,andHurley,J.H.(2008).Dynamicsofcholesterolexchangeintheoxysterolbindingproteinfamily.J.Mol.Biol.378,737–748.doi:10.1016/j.jmb.2008.01.075 PubMedAbstract|CrossRefFullText|GoogleScholar Cantor,R.S.(1999).Lipidcompositionandthelateralpressureprofileinmembranes.Biophys.J.76,A58–A58.doi:10.1016/S0006-3495(99)77415-1 CrossRefFullText Capponi,S.,Freites,J.A.,Tobias,D.J.,andWhite,S.H.(2016).Interleafletmixingandcouplinginliquid-disorderedphospholipidbilayers.Biochim.Biophys.Acta1858,354–362.doi:10.1016/j.bbamem.2015.11.024 PubMedAbstract|CrossRefFullText|GoogleScholar Cebecauer,M.,Owen,D.M.,Markiewicz,A.,andMagee,A.I.(2009).Lipidorderandmolecularassembliesintheplasmamembraneofeukaryoticcells.Biochem.Soc.Trans.37(Pt5),1056–1060.doi:10.1042/BST0371056 PubMedAbstract|CrossRefFullText|GoogleScholar Cebecauer,M.,Spitaler,M.,Sergè,A.,andMagee,A.I.(2010).Signallingcomplexesandclusters:functionaladvantagesandmethodologicalhurdles.J.CellSci.123(Pt3),309–320.doi:10.1242/jcs.061739 PubMedAbstract|CrossRefFullText|GoogleScholar Cerottini,J.C.,andBrunner,K.T.(1967).Localizationofmouseisoantigensonthecellsurfaceasrevealedbyimmunofluorescence.Immunology13,395–403. PubMedAbstract|GoogleScholar Chazotte,B.,andHackenbrock,C.R.(1988).Themulticollisional,obstructed,long-rangediffusionalnatureofmitochondrialelectrontransport.J.Biol.Chem.263,14359–14367. PubMedAbstract|GoogleScholar Chen,Y.,Qin,J.,andChen,Z.W.(2008).Fluorescence-topographicNSOMdirectlyvisualizespeak-valleypolaritiesofGM1/GM3raftsincellmembranefluctuations.J.LipidRes.49,2268–2275.doi:10.1194/jlr.D800031-JLR200 PubMedAbstract|CrossRefFullText Chiantia,S.,Schwille,P.,Klymchenko,A.S.,andLondon,E.(2011).AsymmetricGUVspreparedbyMbetaCD-mediatedlipidexchange:anFCSstudy.Biophys.J.100,L1–L3.doi:10.1016/j.bpj.2010.11.051 PubMedAbstract|CrossRefFullText|GoogleScholar Chum,T.,Glatzova,D.,Kvicalova,Z.,Malinsky,J.,Brdicka,T.,andCebecauer,M.(2016).Theroleofpalmitoylationandtransmembranedomaininsortingoftransmembraneadaptorproteins.J.CellSci.129,95–107.doi:10.1242/jcs.194209 PubMedAbstract|CrossRefFullText|GoogleScholar Collins,M.D.,andKeller,S.L.(2008).Tuninglipidmixturestoinduceorsuppressdomainformationacrossleafletsofunsupportedasymmetricbilayers.Proc.Natl.Acad.Sci.U.S.A.105,124–128.doi:10.1073/pnas.0702970105 PubMedAbstract|CrossRefFullText|GoogleScholar Contreras,F.X.,Ernst,A.M.,Haberkant,P.,Björkholm,P.,Lindahl,E.,Gönen,B.,etal.(2012).Molecularrecognitionofasinglesphingolipidspeciesbyaprotein'stransmembranedomain.Nature481,525–529.doi:10.1038/nature10742 PubMedAbstract|CrossRefFullText|GoogleScholar Contreras,F.X.,Ernst,A.M.,Wieland,F.,andBrügger,B.(2011).Specificityofintramembraneprotein-lipidinteractions.ColdSpringHarb.Perspect.Biol.3:a004705.doi:10.1101/cshperspect.a004705 PubMedAbstract|CrossRefFullText|GoogleScholar Cortizo,A.M.,Paladini,A.,Díaz,G.B.,García,M.E.,andGagliardino,J.J.(1990).Changesinducedbyglucoseintheplasmamembranepropertiesofpancreaticislets.Mol.Cell.Endocrinol.71,49–54.doi:10.1016/0303-7207(90)90074-I PubMedAbstract|CrossRefFullText|GoogleScholar Crawley,S.W.,Mooseker,M.S.,andTyska,M.J.(2014).Shapingtheintestinalbrushborder.J.CellBiol.207,441–451.doi:10.1083/jcb.201407015 PubMedAbstract|CrossRefFullText|GoogleScholar Culbertson,C.T.,Jacobson,S.C.,andMichaelRamsey,J.(2002).Diffusioncoefficientmeasurementsinmicrofluidicdevices.Talanta56,365–373.doi:10.1016/S0039-9140(01)00602-6 PubMedAbstract|CrossRefFullText|GoogleScholar DePierre,J.W.,andKarnovsky,M.L.(1973).Plasmamembranesofmammaliancells:areviewofmethodsfortheircharacterizationandisolation.J.CellBiol.56,275–303.doi:10.1083/jcb.56.2.275 PubMedAbstract|CrossRefFullText|GoogleScholar Devaux,P.F.,Herrmann,A.,Ohlwein,N.,andKozlov,M.M.(2008).Howlipidflippasescanmodulatemembranestructure.Biochim.Biophys.Acta1778,1591–1600.doi:10.1016/j.bbamem.2008.03.007 PubMedAbstract|CrossRefFullText|GoogleScholar Digman,M.A.,Wiseman,P.W.,Horwitz,A.R.,andGratton,E.(2009).Detectingproteincomplexesinlivingcellsfromlaserscanningconfocalimagesequencesbythecrosscorrelationrasterimagespectroscopymethod.Biophys.J.96,707–716.doi:10.1016/j.bpj.2008.09.051 PubMedAbstract|CrossRefFullText|GoogleScholar DiRienzo,C.,Gratton,E.,Beltram,F.,andCardarelli,F.(2013).Fastspatiotemporalcorrelationspectroscopytodetermineproteinlateraldiffusionlawsinlivecellmembranes.Proc.Natl.Acad.Sci.U.S.A.110,12307–12312.doi:10.1073/pnas.1222097110 PubMedAbstract|CrossRefFullText|GoogleScholar Douglass,A.D.,andVale,R.D.(2005).Single-moleculemicroscopyrevealsplasmamembranemicrodomainscreatedbyprotein-proteinnetworksthatexcludeortrapsignalingmoleculesinTcells.Cell121,937–950.doi:10.1016/j.cell.2005.04.009 PubMedAbstract|CrossRefFullText|GoogleScholar Dupuy,A.D.,andEngelman,D.M.(2008).Proteinareaoccupancyatthecenteroftheredbloodcellmembrane.Proc.Natl.Acad.Sci.U.S.A.105,2848–2852.doi:10.1073/pnas.0712379105 PubMedAbstract|CrossRefFullText|GoogleScholar Duzgunes,N.,Newton,C.,Fisher,K.,Fedor,J.,andPapahadjopoulos,D.(1988).Monolayercouplinginphosphatidylserinebilayers:distinctphasetransitionsinducedbymagnesiuminteractingwithoneorbothmonolayers.Biochim.Biophys.Acta944,391–398.doi:10.1016/j.jcis.2016.09.007 PubMedAbstract|CrossRefFullText|GoogleScholar Edwards,S.W.,Tan,C.M.,andLimbird,L.E.(2000).LocalizationofG-protein-coupledreceptorsinhealthanddisease.TrendsPharmacol.Sci.21,304–308.doi:10.1016/S0165-6147(00)01513-3 PubMedAbstract|CrossRefFullText|GoogleScholar Eggeling,C.(2015).Super-resolutionopticalmicroscopyoflipidplasmamembranedynamics.EssaysBiochem.57,69–80.doi:10.1042/bse0570069 PubMedAbstract|CrossRefFullText|GoogleScholar Eggeling,C.,Ringemann,C.,Medda,R.,Schwarzmann,G.,Sandhoff,K.,Polyakova,S.,etal.(2009).Directobservationofthenanoscaledynamicsofmembranelipidsinalivingcell.Nature457,1159–1162.doi:10.1038/nature07596 PubMedAbstract|CrossRefFullText|GoogleScholar Elowitz,M.B.,Surette,M.G.,Wolf,P.E.,Stock,J.B.,andLeibler,S.(1999).ProteinmobilityinthecytoplasmofEscherichiacoli.J.Bacteriol.181,197–203. PubMedAbstract|GoogleScholar Ernst,A.M.,Contreras,F.X.,Brügger,B.,andWieland,F.(2010).Determinantsofspecificityattheprotein-lipidinterfaceinmembranes.FEBSLett.584,1713–1720.doi:10.1016/j.febslet.2009.12.060 PubMedAbstract|CrossRefFullText|GoogleScholar Evans,E.,andSackmann,E.(1988).Translationalandrotationaldragcoefficientsforadiskmovinginaliquidmembrane-associatedwitharigidsubstrate.J.FluidMech.194,553–561.doi:10.1017/S0022112088003106 CrossRefFullText|GoogleScholar Fantini,J.,andBarrantes,F.J.(2013).Howcholesterolinteractswithmembraneproteins:anexplorationofcholesterol-bindingsitesincludingCRAC,CARC,andtilteddomains.Front.Physiol.4:31.doi:10.3389/fphys.2013.00031 PubMedAbstract|CrossRefFullText|GoogleScholar Fernández-Busnadiego,R.,Saheki,Y.,andDeCamilli,P.(2015).Three-dimensionalarchitectureofextendedsynaptotagmin-mediatedendoplasmicreticulum-plasmamembranecontactsites.Proc.Natl.Acad.Sci.U.S.A.112,E2004–E2013.doi:10.1073/pnas.1503191112 PubMedAbstract|CrossRefFullText|GoogleScholar Fraenkel,G.,andHopf,H.S.(1940).Thephysiologicalactionofabnormallyhightemperaturesonpoikilothermicanimals:temperatureadaptationandthedegreeofsaturationofthephosphatides.Biochem.J.34,1085–1092.doi:10.1042/bj0341085 PubMedAbstract|CrossRefFullText|GoogleScholar Frick,M.,Schmidt,K.,andNichols,B.J.(2007).Modulationoflateraldiffusionintheplasmamembranebyproteindensity.Curr.Biol.17,462–467.doi:10.1016/j.cub.2007.01.069 PubMedAbstract|CrossRefFullText|GoogleScholar Frisz,J.F.,Klitzing,H.A.,Lou,K.,Hutcheon,I.D.,Weber,P.K.,Zimmerberg,J.,etal.(2013).Sphingolipiddomainsintheplasmamembranesoffibroblastsarenotenrichedwithcholesterol.J.Biol.Chem.288,16855–16861.doi:10.1074/jbc.M113.473207 PubMedAbstract|CrossRefFullText|GoogleScholar Frolov,V.A.,Bashkirov,P.V.,Akimov,S.A.,andZimmerberg,J.(2010).Membranecurvatureandfissionbydynamin:mechanics,dynamicsandpartners.Biophys.J.98:2a.doi:10.1016/j.bpj.2009.12.012 CrossRefFullText Fujita,A.,Cheng,J.,Hirakawa,M.,Furukawa,K.,Kusunoki,S.,andFujimoto,T.(2007).GangliosidesGM1andGM3inthelivingcellmembraneformclusterssusceptibletocholesteroldepletionandchilling.Mol.Biol.Cell18,2112–2122.doi:10.1091/mbc.E07-01-0071 PubMedAbstract|CrossRefFullText|GoogleScholar Fujiwara,T.,Ritchie,K.,Murakoshi,H.,Jacobson,K.,andKusumi,A.(2002).Phospholipidsundergohopdiffusionincompartmentalizedcellmembrane.J.CellBiol.157,1071–1081.doi:10.1083/jcb.200202050 PubMedAbstract|CrossRefFullText|GoogleScholar Gaffield,M.A.,Tabares,L.,andBetz,W.J.(2009).Preferredsitesofexocytosisandendocytosiscolocalizeduringhigh-butnotlower-frequencystimulationinmousemotornerveterminals.J.Neurosci.29,15308–15316.doi:10.1523/JNEUROSCI.4646-09.2009 PubMedAbstract|CrossRefFullText|GoogleScholar Garcia-Parajo,M.F.,Cambi,A.,Torreno-Pina,J.A.,Thompson,N.,andJacobson,K.(2014).Nanoclusteringasadominantfeatureofplasmamembraneorganization.J.CellSci.127,4995–5005.doi:10.1242/jcs.146340 PubMedAbstract|CrossRefFullText|GoogleScholar Golan,D.E.,andVeatch,W.(1980).Lateralmobilityofband3inthehumanerythrocytemembranestudiedbyfluorescencephotobleachingrecovery:evidenceforcontrolbycytoskeletalinteractions.Proc.Natl.Acad.Sci.U.S.A.77,2537–2541.doi:10.1073/pnas.77.5.2537 PubMedAbstract|CrossRefFullText|GoogleScholar Golebiewska,U.,Kay,J.G.,Masters,T.,Grinstein,S.,Im,W.,Pastor,R.W.,etal.(2011).Evidenceforafencethatimpedesthediffusionofphosphatidylinositol4,5-bisphosphateoutoftheformingphagosomesofmacrophages.Mol.Biol.Cell22,3498–3507.doi:10.1091/mbc.E11-02-0114 PubMedAbstract|CrossRefFullText Golebiewska,U.,Nyako,M.,Woturski,W.,Zaitseva,I.,andMcLaughlin,S.(2008).Diffusioncoefficientoffluorescentphosphatidylinositol4,5-bisphosphateintheplasmamembraneofcells.Mol.Biol.Cell19,1663–1669.doi:10.1091/mbc.E07-12-1208 PubMedAbstract|CrossRefFullText Gowrishankar,K.,Ghosh,S.,Saha,S.,Rumamol,C.,Mayor,S.,andRao,M.(2012).Activeremodelingofcorticalactinregulatesspatiotemporalorganizationofcellsurfacemolecules.Cell149,1353–1367.doi:10.1016/j.cell.2012.05.008 PubMedAbstract|CrossRefFullText|GoogleScholar Grecco,H.E.,Schmick,M.,andBastiaens,P.I.(2011).Signalingfromthelivingplasmamembrane.Cell144,897–909.doi:10.1016/j.cell.2011.01.029 PubMedAbstract|CrossRefFullText|GoogleScholar Grossmann,G.,Opekarová,M.,Malinsky,J.,Weig-Meckl,I.,andTanner,W.(2007).Membranepotentialgovernslateralsegregationofplasmamembraneproteinsandlipidsinyeast.EMBOJ.26,1–8.doi:10.1038/sj.emboj.7601466 PubMedAbstract|CrossRefFullText|GoogleScholar Guigas,G.,andWeiss,M.(2015).Effectsofproteincrowdingonmembranesystems.Biochim.Biophys.Acta1858,2441–2450.doi:10.1016/j.bbamem.2015.12.021 PubMedAbstract|CrossRefFullText|GoogleScholar Gurtovenko,A.A.,andVattulainen,I.(2007).Lipidtransmembraneasymmetryandintrinsicmembranepotential:twosidesofthesamecoin.J.Am.Chem.Soc.129,5358–5359.doi:10.1021/ja070949m PubMedAbstract|CrossRefFullText|GoogleScholar Gut,J.,Kawato,S.,Cherry,R.J.,Winterhalter,K.H.,andRichter,C.(1985).Lipid-PeroxidationdecreasestherotationalmobilityofCytochrome-P-450inRat-Livermicrosomes.Biochim.Biophys.Acta817,217–228.doi:10.1016/0005-2736(85)90023-9 PubMedAbstract|CrossRefFullText|GoogleScholar Haberkant,P.,Schmitt,O.,Contreras,F.X.,Thiele,C.,Hanada,K.,Sprong,H.,etal.(2008).Protein-sphingolipidinteractionswithincellularmembranes.J.LipidRes.49,251–262.doi:10.1194/jlr.D700023-JLR200 PubMedAbstract|CrossRefFullText|GoogleScholar Hansen,C.G.,andNichols,B.J.(2009).Molecularmechanismsofclathrin-independentendocytosis.J.CellSci.122(Pt11),1713–1721.doi:10.1242/jcs.033951 PubMedAbstract|CrossRefFullText|GoogleScholar Hanson,M.A.,Cherezov,V.,Griffith,M.T.,Roth,C.B.,Jaakola,V.P.,Chien,E.Y.,etal.(2008).Aspecificcholesterolbindingsiteisestablishedbythe2.8Astructureofthehumanbeta2-adrenergicreceptor.Structure16,897–905.doi:10.1016/j.str.2008.05.001 PubMedAbstract|CrossRefFullText|GoogleScholar Hartel,A.J.,Glogger,M.,Guigas,G.,Jones,N.G.,Fenz,S.F.,Weiss,M.,etal.(2015).Themolecularsizeoftheextra-membranedomaininfluencesthediffusionoftheGPI-anchoredVSGonthetrypanosomeplasmamembrane.Sci.Rep.5:10394.doi:10.1038/srep10394 PubMedAbstract|CrossRefFullText|GoogleScholar Hatzakis,N.S.,Bhatia,V.K.,Larsen,J.,Madsen,K.L.,Bolinger,P.Y.,Kunding,A.H.,etal.(2009).Howcurvedmembranesrecruitamphipathichelicesandproteinanchoringmotifs.Nat.Chem.Biol.5,835–841.doi:10.1038/nchembio.213 PubMedAbstract|CrossRefFullText|GoogleScholar He,H.T.,andMarguet,D.(2011).Detectingnanodomainsinlivingcellmembranebyfluorescencecorrelationspectroscopy.Annu.Rev.Phys.Chem.62,417–436.doi:10.1146/annurev-physchem-032210-103402 PubMedAbstract|CrossRefFullText|GoogleScholar Hebert,B.,Costantino,S.,andWiseman,P.W.(2005).Spatiotemporalimagecorrelationspectroscopy(STICS)theory,verification,andapplicationtoproteinvelocitymappinginlivingCHOcells.Biophys.J.88,3601–3614.doi:10.1529/biophysj.104.054874 PubMedAbstract|CrossRefFullText|GoogleScholar Herman,P.,Vecer,J.,Opekarova,M.,Vesela,P.,Jancikova,I.,Zahumensky,J.,etal.(2015).Depolarizationaffectsthelateralmicrodomainstructureofyeastplasmamembrane.FEBSJ.282,419–434.doi:10.1111/febs.13156 PubMedAbstract|CrossRefFullText|GoogleScholar Hodgkin,A.L.,andHuxley,A.F.(1952).Aquantitativedescriptionofmembranecurrentanditsapplicationtoconductionandexcitationinnerve.J.Physiol.117,500–544.doi:10.1113/jphysiol.1952.sp004764 PubMedAbstract|CrossRefFullText|GoogleScholar Honigmann,A.,Mueller,V.,Ta,H.,Schoenle,A.,Sezgin,E.,Hell,S.W.,etal.(2014).ScanningSTED-FCSrevealsspatiotemporalheterogeneityoflipidinteractionintheplasmamembraneoflivingcells.Nat.Commun.5:5412.doi:10.1038/ncomms6412 PubMedAbstract|CrossRefFullText|GoogleScholar Hughes,B.D.,Pailthorpe,B.A.,andWhite,L.R.(1981).Thetranslationalandrotationaldragonacylindermovinginamembrane.J.FluidMech.110,349–372.doi:10.1017/S0022112081000785 CrossRefFullText|GoogleScholar Hung,M.C.,andLink,W.(2011).Proteinlocalizationindiseaseandtherapy.J.CellSci.124(Pt20),3381–3392.doi:10.1242/jcs.089110 PubMedAbstract|CrossRefFullText|GoogleScholar Hynes,R.O.(2009).Theextracellularmatrix:notjustprettyfibrils.Science326,1216–1219.doi:10.1126/science.1176009 PubMedAbstract|CrossRefFullText|GoogleScholar Ipsen,J.H.,Karlström,G.,Mouritsen,O.G.,Wennerström,H.,andZuckermann,M.J.(1987).Phaseequilibriainthephosphatidylcholine-cholesterolsystem.Biochim.Biophys.Acta905,162–172.doi:10.1016/0005-2736(87)90020-4 PubMedAbstract|CrossRefFullText|GoogleScholar Ivankin,A.,Kuzmenko,I.,andGidalevitz,D.(2010).Cholesterol-phospholipidinteractions:newinsightsfromsurfacex-rayscatteringdata.Phys.Rev.Lett.104,108101–108104.doi:10.1103/PhysRevLett.104.108101 PubMedAbstract|CrossRefFullText|GoogleScholar Jacobson,K.,Ishihara,A.,andInman,R.(1987).Lateraldiffusionofproteinsinmembranes.Annu.Rev.Physiol.49,163–175.doi:10.1146/annurev.ph.49.030187.001115 PubMedAbstract|CrossRefFullText|GoogleScholar Jacobson,K.,O'Dell,D.,Holifield,B.,Murphy,T.L.,andAugust,J.T.(1984).Redistributionofamajorcellsurfaceglycoproteinduringcellmovement.J.CellBiol.99,1613–1623.doi:10.1083/jcb.99.5.1613 PubMedAbstract|CrossRefFullText|GoogleScholar Janetopoulos,C.,andFirtel,R.A.(2008).Directionalsensingduringchemotaxis.FEBSLett.582,2075–2085.doi:10.1016/j.febslet.2008.04.035 PubMedAbstract|CrossRefFullText|GoogleScholar Jaqaman,K.,Kuwata,H.,Touret,N.,Collins,R.,Trimble,W.S.,Danuser,G.,etal.(2011).CytoskeletalcontrolofCD36diffusionpromotesitsreceptorandsignalingfunction.Cell146,593–606.doi:10.1016/j.cell.2011.06.049 PubMedAbstract|CrossRefFullText|GoogleScholar Jeon,J.H.,Monne,H.M.,Javanainen,M.,andMetzler,R.(2012).Anomalousdiffusionofphospholipidsandcholesterolsinalipidbilayeranditsorigins.Phys.Rev.Lett.109:188103.doi:10.1103/PhysRevLett.109.188103 PubMedAbstract|CrossRefFullText|GoogleScholar Johnson,J.L.,Monfregola,J.,Napolitano,G.,Kiosses,W.B.,andCatz,S.D.(2012).VesiculartraffickingthroughcorticalactinduringexocytosisisregulatedbytheRab27aeffectorJFC1/Slp1andtheRhoA-GTPase-activatingproteinGem-interactingprotein.Mol.Biol.Cell23,1902–1916.doi:10.1091/mbc.E11-12-1001 PubMedAbstract|CrossRefFullText|GoogleScholar Jurkiewicz,P.,Cwiklik,L.,Vojtíšková,A.,Jungwirth,P.,andHof,M.(2012).Structure,dynamics,andhydrationofPOPC/POPSbilayerssuspendedinNaCl,KCl,andCsClsolutions.Biochim.Biophys.Acta1818,609–616.doi:10.1016/j.bbamem.2011.11.033 PubMedAbstract|CrossRefFullText|GoogleScholar Kahya,N.,Brown,D.A.,andSchwille,P.(2005).Raftpartitioninganddynamicbehaviorofhumanplacentalalkalinephosphataseingiantunilamellarvesicles.Biochemistry44,7479–7489.doi:10.1021/bi047429d PubMedAbstract|CrossRefFullText|GoogleScholar Kahya,N.,Scherfeld,D.,Bacia,K.,Poolman,B.,andSchwille,P.(2003).Probinglipidmobilityofraft-exhibitingmodelmembranesbyfluorescencecorrelationspectroscopy.J.Biol.Chem.278,28109–28115.doi:10.1074/jbc.M302969200 PubMedAbstract|CrossRefFullText|GoogleScholar Kaiser,H.J.,Orlowski,A.,Róg,T.,Nyholm,T.K.,Chai,W.,Feizi,T.,etal.(2011).Lateralsortinginmodelmembranesbycholesterol-mediatedhydrophobicmatching.Proc.Natl.Acad.Sci.U.S.A.108,16628–16633.doi:10.1073/pnas.1103742108 PubMedAbstract|CrossRefFullText|GoogleScholar Karnovsky,M.J.,Kleinfeld,A.M.,Hoover,R.L.,Dawidowicz,E.A.,McIntyre,D.E.,Salzman,E.A.,etal.(1982).Lipiddomainsinmembranes.Ann.N.Y.Acad.Sci.401,61–75.doi:10.1111/j.1749-6632.1982.tb25707.x PubMedAbstract|CrossRefFullText|GoogleScholar Kenworthy,A.K.,Nichols,B.J.,Remmert,C.L.,Hendrix,G.M.,Kumar,M.,Zimmerberg,J.,etal.(2004).Dynamicsofputativeraft-associatedproteinsatthecellsurface.J.CellBiol.165,735–746.doi:10.1083/jcb.200312170 PubMedAbstract|CrossRefFullText|GoogleScholar Kiessling,V.,Crane,J.M.,andTamm,L.K.(2006).Transbilayereffectsofraft-likelipiddomainsinasymmetricplanarbilayersmeasuredbysinglemoleculetracking.Biophys.J.91,3313–3326.doi:10.1529/biophysj.106.091421 PubMedAbstract|CrossRefFullText|GoogleScholar Klammt,C.,andLillemeier,B.F.(2012).HowmembranestructurescontrolTcellsignaling.Front.Immunol.3:291.doi:10.3389/fimmu.2012.00291 PubMedAbstract|CrossRefFullText|GoogleScholar Klausner,R.D.,Kleinfeld,A.M.,Hoover,R.L.,andKarnovsky,M.J.(1980).Lipiddomainsinmembranes.Evidencederivedfromstructuralperturbationsinducedbyfreefattyacidsandlifetimeheterogeneityanalysis.J.Biol.Chem.255,1286–1295. PubMedAbstract|GoogleScholar Klotzsch,E.,andSchütz,G.J.(2013).Acriticalsurveyofmethodstodetectplasmamembranerafts.Philos.Trans.R.Soc.BBiol.Sci.368:20120033.doi:10.1098/rstb.2012.0033 PubMedAbstract|CrossRefFullText|GoogleScholar Koppel,D.E.,Sheetz,M.P.,andSchindler,M.(1981).Matrixcontrolofproteindiffusioninbiologicalmembranes.Proc.Natl.Acad.Sci.U.S.A.78,3576–3580.doi:10.1073/pnas.78.6.3576 PubMedAbstract|CrossRefFullText|GoogleScholar Korlach,J.,Schwille,P.,Webb,W.W.,andFeigenson,G.W.(1999).Characterizationoflipidbilayerphasesbyconfocalmicroscopyandfluorescencecorrelationspectroscopy.Proc.Natl.Acad.Sci.U.S.A.96,8461–8466.doi:10.1073/pnas.96.15.8461 PubMedAbstract|CrossRefFullText|GoogleScholar Kourilsky,F.M.,Silvestre,D.,Levy,J.P.,Dausset,J.,Nicolai,M.G.,andSenik,A.(1971).ImmunoferritinstudyofthedistributionofHL-Aantigensonhumanbloodcells.J.Immunol.106,454–466. PubMedAbstract|GoogleScholar Kowalska,M.A.,andCierniewski,C.S.(1983).Microenvironmentchangesofhuman-bloodplateletmembranesassociatedwithfibrinogenbinding.J.Membr.Biol.75,57–64.doi:10.1007/BF01870799 PubMedAbstract|CrossRefFullText|GoogleScholar Kraft,M.L.(2013).Plasmamembraneorganizationandfunction:movingpastlipidrafts.Mol.Biol.Cell24,2765–2768.doi:10.1091/mbc.E13-03-0165 PubMedAbstract|CrossRefFullText|GoogleScholar Kucik,D.F.,Elson,E.L.,andSheetz,M.P.(1999).Weakdependenceofmobilityofmembraneproteinaggregatesonaggregatesizesupportsaviscousmodelofretardationofdiffusion.Biophys.J.76(1Pt1),314–322.doi:10.1016/S0006-3495(99)77198-5 PubMedAbstract|CrossRefFullText|GoogleScholar Kusumi,A.,Ike,H.,Nakada,C.,Murase,K.,andFujiwara,T.(2005).Single-moleculetrackingofmembranemolecules:plasmamembranecompartmentalizationanddynamicassemblyofraft-philicsignalingmolecules.Semin.Immunol.17,3–21.doi:10.1016/j.smim.2004.09.004 PubMedAbstract|CrossRefFullText|GoogleScholar Kusumi,A.,Shirai,Y.M.,Koyama-Honda,I.,Suzuki,K.G.,andFujiwara,T.K.(2010).Hierarchicalorganizationoftheplasmamembrane:investigationsbysingle-moleculetrackingvs.fluorescencecorrelationspectroscopy.FEBSLett.584,1814–1823.doi:10.1016/j.febslet.2010.02.047 PubMedAbstract|CrossRefFullText|GoogleScholar Kwon,H.J.,Abi-Mosleh,L.,Wang,M.L.,Deisenhofer,J.,Goldstein,J.L.,Brown,M.S.,etal.(2009).StructureofN-terminaldomainofNPC1revealsdistinctsubdomainsforbindingandtransferofcholesterol.Cell137,1213–1224.doi:10.1016/j.cell.2009.03.049 PubMedAbstract|CrossRefFullText|GoogleScholar Lee,A.G.(2004).Howlipidsaffecttheactivitiesofintegralmembraneproteins.Biochim.Biophys.Acta1666,62–87.doi:10.1016/j.bbamem.2004.05.012 PubMedAbstract|CrossRefFullText|GoogleScholar Lee,I.H.,Saha,S.,Polley,A.,Huang,H.,Mayor,S.,Rao,M.,etal.(2015).Livecellplasmamembranesdonotexhibitamiscibilityphasetransitionoverawiderangeoftemperatures.J.Phys.Chem.B119,4450–4459.doi:10.1021/jp512839q PubMedAbstract|CrossRefFullText|GoogleScholar Letschert,S.,Göhler,A.,Franke,C.,Bertleff-Zieschang,N.,Memmel,E.,Doose,S.,etal.(2014).Super-resolutionimagingofplasmamembraneglycans.Angew.Chem.Int.EdEngl.53,10921–10924.doi:10.1002/anie.201406045 PubMedAbstract|CrossRefFullText|GoogleScholar Lev,S.(2012).Nonvesicularlipidtransferfromtheendoplasmicreticulum.ColdSpringHarb.Perspect.Biol.4:a013300.doi:10.1101/cshperspect.a013300 PubMedAbstract|CrossRefFullText|GoogleScholar Lichtenberg,D.,Goñi,F.M.,andHeerklotz,H.(2005).Detergent-resistantmembranesshouldnotbeidentifiedwithmembranerafts.TrendsBiochem.Sci.30,430–436.doi:10.1016/j.tibs.2005.06.004 PubMedAbstract|CrossRefFullText|GoogleScholar Lillemeier,B.F.,Mörtelmaier,M.A.,Forstner,M.B.,Huppa,J.B.,Groves,J.T.,andDavis,M.M.(2010).TCRandLatareexpressedonseparateproteinislandsonTcellmembranesandconcatenateduringactivation.Nat.Immunol.11,90–96.doi:10.1038/ni.1832 PubMedAbstract|CrossRefFullText|GoogleScholar Lillemeier,B.F.,Pfeiffer,J.R.,Surviladze,Z.,Wilson,B.S.,andDavis,M.M.(2006).Plasmamembrane-associatedproteinsareclusteredintoislandsattachedtothecytoskeleton.Proc.Natl.Acad.Sci.U.S.A.103,18992–18997.doi:10.1073/pnas.0609009103 PubMedAbstract|CrossRefFullText|GoogleScholar Lingwood,D.,andSimons,K.(2010).Lipidraftsasamembrane-organizingprinciple.Science327,46–50.doi:10.1126/science.1174621 PubMedAbstract|CrossRefFullText|GoogleScholar Lippincott-Schwartz,J.,Snapp,E.,andKenworthy,A.(2001).Studyingproteindynamicsinlivingcells.Nat.Rev.Mol.CellBiol.2,444–456.doi:10.1038/35073068 PubMedAbstract|CrossRefFullText|GoogleScholar Luby-Phelps,K.,Castle,P.,Taylor,D.L.,andLanni,F.(1986).Furtherevidencefortheexistenceofastructuralnetworkinthecytoplasmicgroundsubstanceoflivingcells.J.CellBiol.103,A286–A286. Luby-Phelps,K.,Mujumdar,S.,Mujumdar,R.B.,Ernst,L.A.,Galbraith,W.,andWaggoner,A.S.(1993).Anovelfluorescenceratiometricmethodconfirmsthelowsolventviscosityofthecytoplasm.Biophys.J.65,236–242.doi:10.1016/S0006-3495(93)81075-0 PubMedAbstract|CrossRefFullText|GoogleScholar Machta,B.B.,Papanikolaou,S.,Sethna,J.P.,andVeatch,S.L.(2011).Minimalmodelofplasmamembraneheterogeneityrequirescouplingcorticalactintocriticality.Biophys.J.100,1668–1677.doi:10.1016/j.bpj.2011.02.029 PubMedAbstract|CrossRefFullText|GoogleScholar Magee,A.I.,Adler,J.,andParmryd,I.(2005).Cold-inducedcoalescenceofT-cellplasmamembranemicrodomainsactivatessignallingpathways.J.CellSci.118(Pt14),3141–3151.doi:10.1242/jcs.02442 PubMedAbstract|CrossRefFullText|GoogleScholar Magidson,V.,andKhodjakov,A.(2013).Circumventingphotodamageinlive-cellmicroscopy.MethodsCellBiol.114,545–560.doi:10.1016/B978-0-12-407761-4.00023-3 PubMedAbstract|CrossRefFullText|GoogleScholar Malínská,K.,Malínský,J.,Opekarová,M.,andTanner,W.(2003).Visualizationofproteincompartmentationwithintheplasmamembraneoflivingyeastcells.Mol.Biol.Cell14,4427–4436.doi:10.1091/mbc.E03-04-0221 PubMedAbstract|CrossRefFullText|GoogleScholar Malinsky,J.,Tanner,W.,andOpekarova,M.(2016).Transmembranevoltage:potentialtoinducelateralmicrodomains.Biochim.Biophys.Acta.1861(8PtB),806–811.doi:10.1016/j.bbalip.2016.02.012 PubMedAbstract|CrossRefFullText|GoogleScholar Marsh,D.(1993).“Thenatureofthelipid-proteininterfaceandtheinfluenceofproteinstructureonprotein-lipidinteractions,”inProtein-LipidInteractions,edA.Watts(Amsterdam:Elsevier),41–66. GoogleScholar Marsh,D.(1996).Lateralpressureinmembranes.Biochim.Biophys.Acta1286,183–223.doi:10.1016/S0304-4157(96)00009-3 PubMedAbstract|CrossRefFullText Matsuda,S.,Miura,E.,Matsuda,K.,Kakegawa,W.,Kohda,K.,Watanabe,M.,etal.(2008).AccumulationofAMPAreceptorsinautophagosomesinneuronalaxonslackingadaptorproteinAP-4.Neuron57,730–745.doi:10.1016/j.neuron.2008.02.012 PubMedAbstract|CrossRefFullText|GoogleScholar Matthews,J.M.(2012).“Proteindimerizationandoligomerizationinbiology,”inAdvancesinExperimentalMedicineandBiology,edM.M.Jacqueline(NewYork,NY:Springer-Verlag),V–Vi.doi:10.1007/978-1-4614-3229-6 CrossRefFullText Mattila,P.K.,andLappalainen,P.(2008).Filopodia:moleculararchitectureandcellularfunctions.Nat.Rev.Mol.CellBiol.9,446–454.doi:10.1038/nrm2406 PubMedAbstract|CrossRefFullText|GoogleScholar Maxfield,F.R.,andvanMeer,G.(2010).Cholesterol,thecentrallipidofmammaliancells.Curr.Opin.CellBiol.22,422–429.doi:10.1016/j.ceb.2010.05.004 PubMedAbstract|CrossRefFullText|GoogleScholar Mazzon,M.,andMercer,J.(2014).Lipidinteractionsduringvirusentryandinfection.Cell.Microbiol.16,1493–1502.doi:10.1111/cmi.12340 PubMedAbstract|CrossRefFullText|GoogleScholar McLaughlin,S.,andMurray,D.(2005).Plasmamembranephosphoinositideorganizationbyproteinelectrostatics.Nature438,605–611.doi:10.1038/nature04398 PubMedAbstract|CrossRefFullText|GoogleScholar McMahon,H.T.,andGallop,J.L.(2005).Membranecurvatureandmechanismsofdynamiccellmembraneremodelling.Nature438,590–596.doi:10.1038/nature04396 PubMedAbstract|CrossRefFullText|GoogleScholar Meier,P.,Sachse,J.H.,Brophy,P.J.,Marsh,D.,andKothe,G.(1987).Integralmembraneproteinssignificantlydecreasethemolecularmotioninlipidbilayers:adeuteronNMRrelaxationstudyofmembranescontainingmyelinproteolipidapoprotein.Proc.Natl.Acad.Sci.U.S.A.84,3704–3708.doi:10.1073/pnas.84.11.3704 PubMedAbstract|CrossRefFullText|GoogleScholar Merkel,R.,Sackmann,E.,andEvans,E.(1989).Molecularfrictionandepitacticcouplingbetweenmonolayersinsupportedbilayers.J.DePhys.50,1535–1555.doi:10.1051/jphys:0198900500120153500 CrossRefFullText|GoogleScholar Mihailescu,M.,Vaswani,R.G.,Jardón-Valadez,E.,Castro-Román,F.,Freites,J.A.,Worcester,D.L.,etal.(2011).Acyl-chainmethyldistributionsofliquid-orderedand-disorderedmembranes.Biophys.J.100,1455–1462.doi:10.1016/j.bpj.2011.01.035 PubMedAbstract|CrossRefFullText|GoogleScholar Mima,J.,Hickey,C.M.,Xu,H.,Jun,Y.,andWickner,W.(2008).Reconstitutedmembranefusionrequiresregulatorylipids,SNAREsandsynergisticSNAREchaperones.EMBOJ.27,2031–2042.doi:10.1038/emboj.2008.139 PubMedAbstract|CrossRefFullText|GoogleScholar Miosge,L.,andZamoyska,R.(2007).SignallinginT-celldevelopment:isitalllocation,location,location?Curr.Opin.Immunol.19,194–199.doi:10.1016/j.coi.2007.02.008 PubMedAbstract|CrossRefFullText|GoogleScholar Mitra,K.,Ubarretxena-Belandia,I.,Taguchi,T.,Warren,G.,andEngelman,D.M.(2004).Modulationofthebilayerthicknessofexocyticpathwaymembranesbymembraneproteinsratherthancholesterol.Proc.Natl.Acad.Sci.U.S.A.101,4083–4088.doi:10.1073/pnas.0307332101 PubMedAbstract|CrossRefFullText|GoogleScholar Morgan,M.R.,Humphries,M.J.,andBass,M.D.(2007).Synergisticcontrolofcelladhesionbyintegrinsandsyndecans.Nat.Rev.Mol.CellBiol.8,957–969.doi:10.1038/nrm2289 PubMedAbstract|CrossRefFullText|GoogleScholar Mouritsen,O.G.,andBagatolli,L.A.(2015).Lipiddomainsinmodelmembranes:abriefhistoricalperspective.EssaysBiochem.57,1–19.doi:10.1042/bse0570001 PubMedAbstract|CrossRefFullText|GoogleScholar Mouritsen,O.G.,andBloom,M.(1984).Mattressmodeloflipid-proteininteractionsinmembranes.Biophys.J.46,141–153.doi:10.1016/S0006-3495(84)84007-2 PubMedAbstract|CrossRefFullText|GoogleScholar Mouritsen,O.G.,andBloom,M.(1993).ModelsofLipid-ProteinInteractionsinMembranes.Annu.Rev.Biophys.Biomol.Struct.22,145–171.doi:10.1146/annurev.bb.22.060193.001045 PubMedAbstract|CrossRefFullText|GoogleScholar Mouritsen,O.G.,andZuckermann,M.J.(2004).What'ssospecialaboutcholesterol?Lipids39,1101–1113.doi:10.1007/s11745-004-1336-x PubMedAbstract|CrossRefFullText|GoogleScholar Mueller,V.,Honigmann,A.,Ringemann,C.,Medda,R.,Schwarzmann,G.,andEggeling,C.(2013).FCSinSTEDmicroscopy:studyingthenanoscaleoflipidmembranedynamics.Meth.Enzymol.519,1–38.doi:10.1016/B978-0-12-405539-1.00001-4 PubMedAbstract|CrossRefFullText|GoogleScholar Mueller,V.,Ringemann,C.,Honigmann,A.,Schwarzmann,G.,Medda,R.,Leutenegger,M.,etal.(2011).STEDnanoscopyrevealsmoleculardetailsofcholesterol-andcytoskeleton-modulatedlipidinteractionsinlivingcells.Biophys.J.101,1651–1660.doi:10.1016/j.bpj.2011.09.006 PubMedAbstract|CrossRefFullText|GoogleScholar Munro,S.(1995).AninvestigationoftheroleoftransmembranedomainsinGolgiproteinretention.EMBOJ.14,4695–4704. PubMedAbstract|GoogleScholar Murase,K.,Fujiwara,T.,Umemura,Y.,Suzuki,K.,Iino,R.,Yamashita,H.,etal.(2004).Ultrafinemembranecompartmentsformoleculardiffusionasrevealedbysinglemoleculetechniques.Biophys.J.86,4075–4093.doi:10.1529/biophysj.103.035717 PubMedAbstract|CrossRefFullText|GoogleScholar Nickels,J.D.,Smith,J.C.,andCheng,X.(2015).Lateralorganization,bilayerasymmetry,andinter-leafletcouplingofbiologicalmembranes.Chem.Phys.Lipids192,87–99.doi:10.1016/j.chemphyslip.2015.07.012 PubMedAbstract|CrossRefFullText|GoogleScholar Nicolson,G.L.(1979).Topographicdisplayofcellsurfacecomponentsandtheirroleintransmembranesignaling.Curr.Top.Dev.Biol.13(Pt1),305–338.doi:10.1016/S0070-2153(08)60700-0 PubMedAbstract|CrossRefFullText|GoogleScholar Nicolson,G.L.(2014).TheFluid-Mosaicmodelofmembranestructure:stillrelevanttounderstandingthestructure,functionanddynamicsofbiologicalmembranesaftermorethan40years.Biochim.Biophys.Acta1838,1451–1466.doi:10.1016/j.bbamem.2013.10.019 PubMedAbstract|CrossRefFullText|GoogleScholar Nicolson,G.L.,Hyman,R.,andSinger,S.J.(1971).Thetwo-dimensionaltopographicdistributionofH-2histocompatibilityalloantigensonmouseredbloodcellmembranes.J.CellBiol.50,905–910.doi:10.1083/jcb.50.3.905 PubMedAbstract|CrossRefFullText|GoogleScholar Niemelä,P.S.,Miettinen,M.S.,Monticelli,L.,Hammaren,H.,Bjelkmar,P.,Murtola,T.,etal.(2010).Membraneproteinsdiffuseasdynamiccomplexeswithlipids.J.Am.Chem.Soc.132,7574–7575.doi:10.1021/ja101481b PubMedAbstract|CrossRefFullText|GoogleScholar Nussinov,R.(2013).Thespatialstructureofcellsignalingsystems.Phys.Biol.10:045004.doi:10.1088/1478-3975/10/4/045004 PubMedAbstract|CrossRefFullText|GoogleScholar Olšinová,M.,Jurkiewicz,P.,Pozník,M.,Šachl,R.,Prausová,T.,Hof,M.,etal.(2014).Di-andtri-oxalkylderivativesofaborondipyrromethene(BODIPY)rotordyeinlipidbilayers.Phys.Chem.Chem.Phys.16,10688–10697.doi:10.1039/C4CP00888J PubMedAbstract|CrossRefFullText|GoogleScholar Onfelt,B.,Nedvetzki,S.,Yanagi,K.,andDavis,D.M.(2004).Cuttingedge:membranenanotubesconnectimmunecells.J.Immunol.173,1511–1513.doi:10.4049/jimmunol.173.3.1511 PubMedAbstract|CrossRefFullText|GoogleScholar Ortega-Arroyo,J.,andKukura,P.(2012).Interferometricscatteringmicroscopy(iSCAT):newfrontiersinultrafastandultrasensitiveopticalmicroscopy.Phys.Chem.Chem.Phys.14,15625–15636.doi:10.1039/c2cp41013c PubMedAbstract|CrossRefFullText|GoogleScholar O'shea,P.S.,Feuerstein-Thelen,S.,andAzzi,A.(1984).Membrane-potential-dependentchangesofthelipidmicroviscosityofmitochondriaandphospholipidvesicles.Biochem.J.220,795–801.doi:10.1042/bj2200795 PubMedAbstract|CrossRefFullText|GoogleScholar Owen,D.M.,Gaus,K.,Magee,A.I.,andCebecauer,M.(2010).Dynamicorganizationoflymphocyteplasmamembrane:lessonsfromadvancedimagingmethods.Immunology131,1–8.doi:10.1111/j.1365-2567.2010.03319.x PubMedAbstract|CrossRefFullText|GoogleScholar Owen,D.M.,Williamson,D.J.,Magenau,A.,andGaus,K.(2012).Sub-resolutionlipiddomainsexistintheplasmamembraneandregulateproteindiffusionanddistribution.Nat.Commun.3:1256.doi:10.1038/ncomms2273 PubMedAbstract|CrossRefFullText|GoogleScholar Peters,R.,andCherry,R.J.(1982).Lateralandrotationaldiffusionofbacteriorhodopsininlipidbilayers:experimentaltestoftheSaffman-Delbruckequations.Proc.Natl.Acad.Sci.U.S.A.79,4317–4321.doi:10.1073/pnas.79.14.4317 PubMedAbstract|CrossRefFullText|GoogleScholar Quemeneur,F.,Sigurdsson,J.K.,Renner,M.,Atzberger,P.J.,Bassereau,P.,andLacoste,D.(2014).Shapemattersinproteinmobilitywithinmembranes.Proc.Natl.Acad.Sci.U.S.A.111,5083–5087.doi:10.1073/pnas.1321054111 PubMedAbstract|CrossRefFullText|GoogleScholar Raghupathy,R.,Anilkumar,A.A.,Polley,A.,Singh,P.P.,Yadav,M.,Johnson,C.,etal.(2015).Transbilayerlipidinteractionsmediatenanoclusteringoflipid-anchoredproteins.Cell161,581–594.doi:10.1016/j.cell.2015.03.048 PubMedAbstract|CrossRefFullText|GoogleScholar Ramadurai,S.,Holt,A.,Krasnikov,V.,vandenBogaart,G.,Killian,J.A.,andPoolman,B.(2009).Lateraldiffusionofmembraneproteins.J.Am.Chem.Soc.131,12650–12656.doi:10.1021/ja902853g PubMedAbstract|CrossRefFullText|GoogleScholar Rao,M.,andMayor,S.(2014).Activeorganizationofmembraneconstituentsinlivingcells.Curr.Opin.CellBiol.29,126–132.doi:10.1016/j.ceb.2014.05.007 PubMedAbstract|CrossRefFullText|GoogleScholar Raychaudhuri,S.,Im,Y.J.,Hurley,J.H.,andPrinz,W.A.(2006).NonvesicularsterolmovementfromplasmamembranetoERrequiresoxysterol-bindingprotein-relatedproteinsandphosphoinositides.J.CellBiol.173,107–119.doi:10.1083/jcb.200510084 PubMedAbstract|CrossRefFullText|GoogleScholar Ritchie,K.,Iino,R.,Fujiwara,T.,Murase,K.,andKusumi,A.(2003).Thefenceandpicketstructureoftheplasmamembraneoflivecellsasrevealedbysinglemoleculetechniques.Mol.Membr.Biol.20,13–18.doi:10.1080/0968768021000055698 PubMedAbstract|CrossRefFullText|GoogleScholar Ritchie,K.,Shan,X.Y.,Kondo,J.,Iwasawa,K.,Fujiwara,T.,andKusumi,A.(2005).Detectionofnon-Browniandiffusioninthecellmembraneinsinglemoleculetracking.Biophys.J.88,2266–2277.doi:10.1529/biophysj.104.054106 PubMedAbstract|CrossRefFullText|GoogleScholar Rossier,O.,Octeau,V.,Sibarita,J.B.,Leduc,C.,Tessier,B.,Nair,D.,etal.(2012).Integrinsbeta1andbeta3exhibitdistinctdynamicnanoscaleorganizationsinsidefocaladhesions.Nat.CellBiol.14,1057–1067.doi:10.1038/ncb2588 PubMedAbstract|CrossRefFullText|GoogleScholar Rothman,J.E.,andLenard,J.(1977).Membraneasymmetry.Science195,743–753. PubMedAbstract|GoogleScholar Rubin-Delanchy,P.,Burn,G.L.,Griffié,J.,Williamson,D.J.,Heard,N.A.,Cope,A.P.,etal.(2015).Bayesianclusteridentificationinsingle-moleculelocalizationmicroscopydata.Nat.Methods12,1072–1076.doi:10.1038/nmeth.3612 PubMedAbstract|CrossRefFullText|GoogleScholar Šachl,R.,Mikhalyov,I.,Gretskaya,N.,Olzynska,A.,Hof,M.,andJohansson,L.B.(2011).DistributionofBODIPY-labelledphosphatidylethanolaminesinlipidbilayersexhibitingdifferentcurvatures.Phys.Chem.Chem.Phys.13,11694–11701.doi:10.1039/c1cp20608g PubMedAbstract|CrossRefFullText|GoogleScholar Saffman,P.G.,andDelbrück,M.(1975).Brownianmotioninbiologicalmembranes.Proc.Natl.Acad.Sci.U.S.A.72,3111–3113.doi:10.1073/pnas.72.8.3111 PubMedAbstract|CrossRefFullText|GoogleScholar Saka,S.K.,Honigmann,A.,Eggeling,C.,Hell,S.W.,Lang,T.,andRizzoli,S.O.(2014).Multi-proteinassembliesunderliethemesoscaleorganizationoftheplasmamembrane.Nat.Commun.5,4509.doi:10.1038/ncomms5509 PubMedAbstract|CrossRefFullText|GoogleScholar Sako,Y.,andKusumi,A.(1995).Barriersforlateraldiffusionoftransferrinreceptorintheplasmamembraneascharacterizedbyreceptordraggingbylasertweezers:fenceversustether.J.CellBiol.129,1559–1574.doi:10.1083/jcb.129.6.1559 PubMedAbstract|CrossRefFullText|GoogleScholar Saxton,M.J.(1987).Lateraldiffusioninanarchipelago.Theeffectofmobileobstacles.Biophys.J.52,989–997.doi:10.1016/S0006-3495(87)83291-5 PubMedAbstract|CrossRefFullText|GoogleScholar Saxton,M.J.(1990).Themembraneskeletonoferythrocytes.Apercolationmodel.Biophys.J.57,1167–1177.doi:10.1016/S0006-3495(90)82636-9 PubMedAbstract|CrossRefFullText|GoogleScholar Saxton,M.J.(2008).Abiologicalinterpretationoftransientanomaloussubdiffusion.II.Reactionkinetics.Biophys.J.94,760–771.doi:10.1529/biophysj.107.114074 PubMedAbstract|CrossRefFullText|GoogleScholar Schaeffer,C.,Creatore,A.,andRampoldi,L.(2014).Proteintraffickingdefectsininheritedkidneydiseases.Nephrol.Dial.Transplant29(Suppl.4),iv33–iv44.doi:10.1093/ndt/gfu231 PubMedAbstract|CrossRefFullText|GoogleScholar Schmidt,C.F.,Barenholz,Y.,Huang,C.,andThompson,T.E.(1978).Monolayercouplinginsphingomyelinbilayersystems.Nature271,775–777.doi:10.1038/271775a0 PubMedAbstract|CrossRefFullText|GoogleScholar Schmoranzer,J.,Goulian,M.,Axelrod,D.,andSimon,S.M.(2000).Imagingconstitutiveexocytosiswithtotalinternalreflectionfluorescencemicroscopy.J.CellBiol.149,23–32.doi:10.1083/jcb.149.1.23 PubMedAbstract|CrossRefFullText|GoogleScholar Sevcsik,E.,Brameshuber,M.,Folser,M.,Weghuber,J.,Honigmann,A.,andSchutz,G.J.(2015).GPI-anchoredproteinsdonotresideinordereddomainsinthelivecellplasmamembrane.Nat.Commun.6:6969.doi:10.1371/journal.pntd.0001708 PubMedAbstract|CrossRefFullText|GoogleScholar Sevcsik,E.,andSchütz,G.J.(2016).Withorwithoutrafts?Alternativeviewsoncellmembranes.Bioessays.38,129–139.doi:10.1002/bies.201500150 PubMedAbstract|CrossRefFullText|GoogleScholar Sezgin,E.,Gutmann,T.,Buhl,T.,Dirkx,R.,Grzybek,M.,Coskun,Ü.,etal.(2015).Adaptivelipidpackingandbioactivityinmembranedomains.PLoSONE10:e0123930.doi:10.1371/journal.pone.0123930 PubMedAbstract|CrossRefFullText|GoogleScholar Sezgin,E.,Levental,I.,Grzybek,M.,Schwarzmann,G.,Mueller,V.,Honigmann,A.,etal.(2012).Partitioning,diffusion,andligandbindingofraftlipidanalogsinmodelandcellularplasmamembranes.Biochim.Biophys.Acta1818,1777–1784.doi:10.1016/j.bbamem.2012.03.007 PubMedAbstract|CrossRefFullText|GoogleScholar Sharpe,H.J.,Stevens,T.J.,andMunro,S.(2010).Acomprehensivecomparisonoftransmembranedomainsrevealsorganelle-specificproperties.Cell142,158–169.doi:10.1016/j.cell.2010.05.037 PubMedAbstract|CrossRefFullText|GoogleScholar Sheetz,M.P.,Sable,J.E.,andDöbereiner,H.G.(2006).Continuousmembrane-cytoskeletonadhesionrequirescontinuousaccommodationtolipidandcytoskeletondynamics.Annu.Rev.Biophys.Biomol.Struct.35,417–434.doi:10.1146/annurev.biophys.35.040405.102017 PubMedAbstract|CrossRefFullText|GoogleScholar Sheetz,M.P.,Schindler,M.,andKoppel,D.E.(1980).Lateralmobilityofintegralmembraneproteinsisincreasedinspherocyticerythrocytes.Nature285,510–511.doi:10.1038/285510a0 PubMedAbstract|CrossRefFullText|GoogleScholar Sherbet,G.V.(1989).Membranefluidityandcancermetastasis.Exp.CellBiol.57,198–205.doi:10.1159/000163526 PubMedAbstract|CrossRefFullText|GoogleScholar Shimshick,E.J.,andMcConnell,H.M.(1973a).Lateralphaseseparationinphospholipidmembranes.Biochemistry12,2351–2360.doi:10.1021/bi00736a026 PubMedAbstract|CrossRefFullText|GoogleScholar Shimshick,E.J.,andMcConnell,H.M.(1973b).Lateralphaseseparationsinbinarymixturesofcholesterolandphospholipids.Biochem.Biophys.Res.Commun.53,446–451.doi:10.1016/0006-291X(73)90682-7 PubMedAbstract|CrossRefFullText|GoogleScholar Shinitzky,M.,andInbar,M.(1976).Microviscosityparametersandproteinmobilityinbiological-membranes.Biochim.Biophys.Acta433,133–149.doi:10.1016/0005-2736(76)90183-8 PubMedAbstract|CrossRefFullText|GoogleScholar Shvartsman,D.E.,Gutman,O.,Tietz,A.,andHenis,Y.I.(2006).Cyclodextrinsbutnotcompactininhibitthelateraldiffusionofmembraneproteinsindependentofcholesterol.Traffic7,917–926.doi:10.3389/fphys.2016.00185 PubMedAbstract|CrossRefFullText|GoogleScholar Sieber,J.J.,Willig,K.I.,Kutzner,C.,Gerding-Reimers,C.,Harke,B.,Donnert,G.,etal.(2007).Anatomyanddynamicsofasupramolecularmembraneproteincluster.Science317,1072–1076.doi:10.1126/science.1141727 PubMedAbstract|CrossRefFullText|GoogleScholar Simons,K.,andIkonen,E.(1997).Functionalraftsincellmembranes.Nature387,569–572.doi:10.1038/42408 PubMedAbstract|CrossRefFullText|GoogleScholar Simons,K.,andvanMeer,G.(1988).Lipidsortinginepithelialcells.Biochemistry27,6197–6202.doi:10.1021/bi00417a001 PubMedAbstract|CrossRefFullText|GoogleScholar Singer,S.J.,andNicolson,G.L.(1971).Thestructureandchemistryofmammaliancellmembranes.Am.J.Pathol.65,427–437. PubMedAbstract|GoogleScholar Singer,S.J.,andNicolson,G.L.(1972).Thefluidmosaicmodelofthestructureofcellmembranes.Science175,720–731.doi:10.1126/science.175.4023.720 PubMedAbstract|CrossRefFullText Spira,F.,Mueller,N.S.,Beck,G.,vonOlshausen,P.,Beig,J.,andWedlich-Söldner,R.(2012).Patchworkorganizationoftheyeastplasmamembraneintonumerouscoexistingdomains.Nat.CellBiol.14,640–648.doi:10.1038/ncb2487 PubMedAbstract|CrossRefFullText|GoogleScholar Stachowiak,J.C.,Brodsky,F.M.,andMiller,E.A.(2013).Acost-benefitanalysisofthephysicalmechanismsofmembranecurvature.Nat.CellBiol.15,1019–1027.doi:10.1038/ncb2832 PubMedAbstract|CrossRefFullText|GoogleScholar Stefan,C.J.,Manford,A.G.,Baird,D.,Yamada-Hanff,J.,Mao,Y.,andEmr,S.D.(2011).OshproteinsregulatephosphoinositidemetabolismatER-plasmamembranecontactsites.Cell144,389–401.doi:10.1016/j.cell.2010.12.034 PubMedAbstract|CrossRefFullText|GoogleScholar Stinchcombe,J.C.,Bossi,G.,Booth,S.,andGriffiths,G.M.(2001).TheimmunologicalsynapseofCTLcontainsasecretorydomainandmembranebridges.Immunity15,751–761.doi:10.1016/S1074-7613(01)00234-5 PubMedAbstract|CrossRefFullText|GoogleScholar Stryer,L.(1995).Biochemistry.NewYork,NY:W.H.FreemanandCompany. GoogleScholar Suzuki,K.G.,Fujiwara,T.K.,Edidin,M.,andKusumi,A.(2007).DynamicrecruitmentofphospholipaseCgammaattransientlyimmobilizedGPI-anchoredreceptorclustersinducesIP3-Ca2+signaling:single-moleculetrackingstudy2.J.CellBiol.177,731–742.doi:10.1083/jcb.200609175 PubMedAbstract|CrossRefFullText|GoogleScholar Swaminathan,R.,Hoang,C.P.,andVerkman,A.S.(1997).PhotobleachingrecoveryandanisotropydecayofgreenfluorescentproteinGFP-S65Tinsolutionandcells:cytoplasmicviscosityprobedbygreenfluorescentproteintranslationalandrotationaldiffusion.Biophys.J.72,1900–1907.doi:10.1016/S0006-3495(97)78835-0 PubMedAbstract|CrossRefFullText|GoogleScholar Tank,D.W.,Wu,E.S.,andWebb,W.W.(1982).Enhancedmoleculardiffusibilityinmusclemembraneblebs:releaseoflateralconstraints.J.CellBiol.92,207–212.doi:10.1083/jcb.92.1.207 PubMedAbstract|CrossRefFullText|GoogleScholar Tarling,E.J.,deAguiarVallim,T.Q.,andEdwards,P.A.(2013).RoleofABCtransportersinlipidtransportandhumandisease.TrendsEndocrinol.Metab.24,342–350.doi:10.1016/j.tem.2013.01.006 PubMedAbstract|CrossRefFullText|GoogleScholar Trimble,W.S.,andGrinstein,S.(2015).Barrierstothefreediffusionofproteinsandlipidsintheplasmamembrane.J.CellBiol.208,259–271.doi:10.1083/jcb.201410071 PubMedAbstract|CrossRefFullText|GoogleScholar Uittenbogaard,A.,andSmart,E.J.(2000).Palmitoylationofcaveolin-1isrequiredforcholesterolbinding,chaperonecomplexformation,andrapidtransportofcholesteroltocaveolae.J.Biol.Chem.275,25595–25599.doi:10.1074/jbc.M003401200 PubMedAbstract|CrossRefFullText|GoogleScholar Vácha,R.,Berkowitz,M.L.,andJungwirth,P.(2009).Molecularmodelofacellplasmamembranewithanasymmetricmulticomponentcomposition:waterpermeationandioneffects.Biophys.J.96,4493–4501.doi:10.1016/j.bpj.2009.03.010 PubMedAbstract|CrossRefFullText|GoogleScholar Valeur,B.,andBerberan-Santos,M.N.(2012).MolecularFluorescence.PrinciplesandApplications.NewYork,NY:WileyVCH. GoogleScholar vanMeer,G.,anddeKroon,A.I.(2011).Lipidmapofthemammaliancell.J.CellSci.124(Pt1),5–8.doi:10.1242/jcs.071233 PubMedAbstract|CrossRefFullText|GoogleScholar vanMeer,G.,andSimons,K.(1982).VirusesbuddingfromeithertheapicalorthebasolateralplasmamembranedomainofMDCKcellshaveuniquephospholipidcompositions.EMBOJ.1,847–852. PubMedAbstract|GoogleScholar vanMeer,G.,Voelker,D.R.,andFeigenson,G.W.(2008).Membranelipids:wheretheyareandhowtheybehave.Nat.Rev.Mol.CellBiol.9,112–124.doi:10.1038/nrm2330 PubMedAbstract|CrossRefFullText|GoogleScholar vanZanten,T.S.,Gómez,J.,Manzo,C.,Cambi,A.,Buceta,J.,Reigada,R.,etal.(2010).Directmappingofnanoscalecompositionalconnectivityonintactcellmembranes.Proc.Natl.Acad.Sci.U.S.A.107,15437–15442.doi:10.1073/pnas.1003876107 PubMedAbstract|CrossRefFullText|GoogleScholar Veatch,S.L.,Cicuta,P.,Sengupta,P.,Honerkamp-Smith,A.,Holowka,D.,andBaird,B.(2008).Criticalfluctuationsinplasmamembranevesicles.ACSChem.Biol.3,287–293.doi:10.1021/cb800012x PubMedAbstract|CrossRefFullText|GoogleScholar Veatch,S.L.,andKeller,S.L.(2005).Miscibilityphasediagramsofgiantvesiclescontainingsphingomyelin.Phys.Rev.Lett.94:148101.doi:10.1103/PhysRevLett.94.148101 PubMedAbstract|CrossRefFullText|GoogleScholar Vilmart-Seuwen,J.,Kersken,H.,Stürzl,R.,andPlattner,H.(1986).AtpkeepsexocytosissitesinaprimedstatebutisnotrequiredforMembrane-Fusion-ananalysiswithparameciumcellsInvivoandInvitro.J.CellBiol.103,1279–1288.doi:10.1083/jcb.103.4.1279 PubMedAbstract|CrossRefFullText|GoogleScholar Voelker,D.R.(2009).Geneticandbiochemicalanalysisofnon-vesicularlipidtraffic.Annu.Rev.Biochem.78,827–856.doi:10.1146/annurev.biochem.78.081307.112144 PubMedAbstract|CrossRefFullText|GoogleScholar Wier,M.L.,andEdidin,M.(1986).Effectsofcelldensityandextracellularmatrixonthelateraldiffusionofmajorhistocompatibilityantigensinculturedfibroblasts.J.CellBiol.103,215–222.doi:10.1083/jcb.103.1.215 PubMedAbstract|CrossRefFullText|GoogleScholar Williamson,J.J.,andOlmsted,P.D.(2015).Kineticsofsymmetryandasymmetryinaphase-separatingbilayermembrane.Phys.Rev.EStat.Nonlin.SoftMatterPhys.92:052721.doi:10.1103/PhysRevE.92.052721 PubMedAbstract|CrossRefFullText|GoogleScholar Wilson,B.S.,Pfeiffer,J.R.,andOliver,J.M.(2000).ObservingFcepsilonRIsignalingfromtheinsideofthemastcellmembrane.J.CellBiol.149,1131–1142.doi:10.1083/jcb.149.5.1131 PubMedAbstract|CrossRefFullText|GoogleScholar Wilson,B.S.,Pfeiffer,J.R.,Surviladze,Z.,Gaudet,E.A.,andOliver,J.M.(2001).HighresolutionmappingofmastcellmembranesrevealsprimaryandsecondarydomainsofFc(epsilon)RIandLAT.J.CellBiol.154,645–658.doi:10.1083/jcb.200104049 PubMedAbstract|CrossRefFullText|GoogleScholar Wilson,R.L.,Frisz,J.F.,Klitzing,H.A.,Zimmerberg,J.,Weber,P.K.,andKraft,M.L.(2015).Hemagglutininclustersintheplasmamembranearenotenrichedwithcholesterolandsphingolipids.Biophys.J.108,1652–1659.doi:10.1016/j.bpj.2015.02.026 PubMedAbstract|CrossRefFullText|GoogleScholar Wu,Q.Y.,andLiang,Q.(2014).Interplaybetweencurvatureandlateralorganizationoflipidsandpeptides/proteinsinmodelmembranes.Langmuir30,1116–1122.doi:10.1021/la4039123 PubMedAbstract|CrossRefFullText|GoogleScholar Yeagle,P.L.(2014).Non-covalentbindingofmembranelipidstomembraneproteins.Biochim.Biophys.Acta1838,1548–1559.doi:10.1016/j.bbamem.2013.11.009 PubMedAbstract|CrossRefFullText|GoogleScholar Yeung,T.,Gilbert,G.E.,Shi,J.,Silvius,J.,Kapus,A.,andGrinstein,S.(2008).Membranephosphatidylserineregulatessurfacechargeandproteinlocalization.Science319,210–213.doi:10.1126/science.1152066 PubMedAbstract|CrossRefFullText|GoogleScholar Zhang,F.,Crise,B.,Su,B.,Hou,Y.,Rose,J.K.,Bothwell,A.,etal.(1991).Lateraldiffusionofmembrane-spanningandglycosylphosphatidylinositol-linkedproteins:towardestablishingrulesgoverningthelateralmobilityofmembraneproteins.J.CellBiol.115,75–84.doi:10.1083/jcb.115.1.75 PubMedAbstract|CrossRefFullText|GoogleScholar Zidovetzki,R.,andLevitan,I.(2007).Useofcyclodextrinstomanipulateplasmamembranecholesterolcontent:evidence,misconceptionsandcontrolstrategies.Biochim.Biophys.Acta1768,1311–1324.doi:10.1016/j.bbamem.2007.03.026 PubMedAbstract|CrossRefFullText|GoogleScholar Keywords:plasmamembrane,membraneorganizationmodels,nanodomains,heterogenousdistribution,membranephysicalproperties Citation:BernardinodelaSernaJ,SchützGJ,EggelingCandCebecauerM(2016)ThereIsNoSimpleModelofthePlasmaMembraneOrganization.Front.CellDev.Biol.4:106.doi:10.3389/fcell.2016.00106 Received:13June2016;Accepted:14September2016;Published:29September2016. Editedby:ManuelJosePrieto,InstitutoSuperiorTécnico,Portugal Reviewedby:DylanMyersOwen,UniversityofNewSouthWales,AustraliaRichardM.Epand,McMasterUniversity,Canada Copyright©2016BernardinodelaSerna,Schütz,EggelingandCebecauer.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)orlicensorarecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. *Correspondence:MarekCebecauer,[email protected] COMMENTARY ORIGINALARTICLE Peoplealsolookedat SuggestaResearchTopic>



請為這篇文章評分?