Applications of Neural Networks - Tutorialspoint
文章推薦指數: 80 %
Why Artificial Neural Networks? · With the help of neural networks, we can find the solution of such problems for which algorithmic method is expensive or does ... ArtificialNeuralNetworkTutorial ArtificialNeuralNetwork-Home BasicConcepts BuildingBlocks Learning&Adaptation SupervisedLearning UnsupervisedLearning LearningVectorQuantization AdaptiveResonanceTheory KohonenSelf-OrganizingFeatureMaps AssociateMemoryNetwork HopfieldNetworks BoltzmannMachine Brain-State-in-a-BoxNetwork OptimizationUsingHopfieldNetwork OtherOptimizationTechniques GeneticAlgorithm ApplicationsofNeuralNetworks ArtificialNeuralNetworkResources QuickGuide UsefulResources Discussion SelectedReading UPSCIASExamsNotes Developer'sBestPractices QuestionsandAnswers EffectiveResumeWriting HRInterviewQuestions ComputerGlossary WhoisWho ApplicationsofNeuralNetworks Advertisements PreviousPage NextPage BeforestudyingthefieldswhereANNhasbeenusedextensively,weneedtounderstandwhyANNwouldbethepreferredchoiceofapplication. WhyArtificialNeuralNetworks? Weneedtounderstandtheanswertotheabovequestionwithanexampleofahumanbeing.Asachild,weusedtolearnthethingswiththehelpofourelders,whichincludesourparentsorteachers.Thenlaterbyself-learningorpracticewekeeplearningthroughoutourlife.Scientistsandresearchersarealsomakingthemachineintelligent,justlikeahumanbeing,andANNplaysaveryimportantroleinthesameduetothefollowingreasons− Withthehelpofneuralnetworks,wecanfindthesolutionofsuchproblemsforwhichalgorithmicmethodisexpensiveordoesnotexist. Neuralnetworkscanlearnbyexample,hencewedonotneedtoprogramitatmuchextent. Neuralnetworkshavetheaccuracyandsignificantlyfastspeedthanconventionalspeed. AreasofApplication Followingsaresomeoftheareas,whereANNisbeingused.ItsuggeststhatANNhasaninterdisciplinaryapproachinitsdevelopmentandapplications. SpeechRecognition Speechoccupiesaprominentroleinhuman-humaninteraction.Therefore,itisnaturalforpeopletoexpectspeechinterfaceswithcomputers.Inthepresentera,forcommunicationwithmachines,humansstillneedsophisticatedlanguageswhicharedifficulttolearnanduse.Toeasethiscommunicationbarrier,asimplesolutioncouldbe,communicationinaspokenlanguagethatispossibleforthemachinetounderstand. Greatprogresshasbeenmadeinthisfield,however,stillsuchkindsofsystemsarefacingtheproblemoflimitedvocabularyorgrammaralongwiththeissueofretrainingofthesystemfordifferentspeakersindifferentconditions.ANNisplayingamajorroleinthisarea.FollowingANNshavebeenusedforspeechrecognition− Multilayernetworks Multilayernetworkswithrecurrentconnections Kohonenself-organizingfeaturemap ThemostusefulnetworkforthisisKohonenSelf-Organizingfeaturemap,whichhasitsinputasshortsegmentsofthespeechwaveform.Itwillmapthesamekindofphonemesastheoutputarray,calledfeatureextractiontechnique.Afterextractingthefeatures,withthehelpofsomeacousticmodelsasback-endprocessing,itwillrecognizetheutterance. CharacterRecognition ItisaninterestingproblemwhichfallsunderthegeneralareaofPatternRecognition.Manyneuralnetworkshavebeendevelopedforautomaticrecognitionofhandwrittencharacters,eitherlettersordigits.FollowingaresomeANNswhichhavebeenusedforcharacterrecognition− MultilayerneuralnetworkssuchasBackpropagationneuralnetworks. Neocognitron Thoughback-propagationneuralnetworkshaveseveralhiddenlayers,thepatternofconnectionfromonelayertothenextislocalized.Similarly,neocognitronalsohasseveralhiddenlayersanditstrainingisdonelayerbylayerforsuchkindofapplications. SignatureVerificationApplication Signaturesareoneofthemostusefulwaystoauthorizeandauthenticateapersoninlegaltransactions.Signatureverificationtechniqueisanon-visionbasedtechnique. Forthisapplication,thefirstapproachistoextractthefeatureorratherthegeometricalfeaturesetrepresentingthesignature.Withthesefeaturesets,wehavetotraintheneuralnetworksusinganefficientneuralnetworkalgorithm.Thistrainedneuralnetworkwillclassifythesignatureasbeinggenuineorforgedundertheverificationstage. HumanFaceRecognition Itisoneofthebiometricmethodstoidentifythegivenface.Itisatypicaltaskbecauseofthecharacterizationof“non-face”images.However,ifaneuralnetworkiswelltrained,thenitcanbedividedintotwoclassesnamelyimageshavingfacesandimagesthatdonothavefaces. First,alltheinputimagesmustbepreprocessed.Then,thedimensionalityofthatimagemustbereduced.And,atlastitmustbeclassifiedusingneuralnetworktrainingalgorithm.Followingneuralnetworksareusedfortrainingpurposeswithpreprocessedimage− Fully-connectedmultilayerfeed-forwardneuralnetworktrainedwiththehelpofback-propagationalgorithm. Fordimensionalityreduction,PrincipalComponentAnalysis(PCA)isused. UsefulVideoCourses Video ProloginArtificialIntelligence 78Lectures 7hours ArnabChakraborty MoreDetail Video ArtificialintelligenceinJavascriptGamedevelopment-TicTacToeAI 87Lectures 9.5hours DigiFisk(ProgrammingIsFun) MoreDetail Video IntroductiontoArtificialIntelligence:AIforbeginners MostPopular 10Lectures 1hours NikolozSanakoevi MoreDetail Video ArtificialIntelligence:TheFutureOfProgramming 15Lectures 54mins MukundKumarMishra MoreDetail Video ArtificialIntelligenceLevel1:Cogito 11Lectures 1hours GiladJames,PhD MoreDetail Video ArtificialIntelligenceLevel2:RiseoftheMachines 20Lectures 2hours GiladJames,PhD MoreDetail PreviousPage PrintPage NextPage Advertisements Print AddNotes Bookmarkthispage ReportError Suggestions Save Close Dashboard Logout
延伸文章資訊
- 1Artificial Neural Networks and its Applications - GeeksforGeeks
Applications of Artificial Neural Networks · 1. Social Media · 2. Marketing and Sales · 3. Health...
- 2What is Neural Network: Overview, Applications, and ...
Applications of Neural Network · Handwriting Recognition · Stock-Exchange prediction · Traveling ...
- 3Real-Life Applications of Neural Networks | Smartsheet
Neural networks are fundamental to deep learning, a robust set of NN techniques that lends itself...
- 4Neural Networks - Applications
- 510 Applications of Artificial Neural Networks in Natural ...
As we showed, neural networks have many applications such as text classification, information ext...