What is Neural Network: Overview, Applications, and ...

文章推薦指數: 80 %
投票人數:10人

Applications of Neural Network · Handwriting Recognition · Stock-Exchange prediction · Traveling Issues of sales professionals · Image compression. AI&MachineLearningDataScience&BusinessAnalyticsAI&MachineLearningProjectManagementCyberSecurityCloudComputingDevOpsBusinessandLeadershipQualityManagementSoftwareDevelopmentAgileandScrumITServiceandArchitectureDigitalMarketingBigDataCareerFast-trackEnterpriseOtherSegmentsVideoTutorialsArticlesEbooksLiveWebinarsOn-demandWebinarsFreePracticeTestsHomeResourcesAI&MachineLearningDeepLearningTutorialforBeginnersWhatisNeuralNetwork:Overview,Applications,andAdvantagesTutorialPlaylistDeepLearningTutorialforBeginnersOverview WhatisDeepLearningandHowDoesItWork[Explained] Lesson-1 TheBestIntroductiontoDeepLearning-AStepbyStepGuide Lesson-2 Top10DeepLearningApplicationsUsedAcrossIndustries Lesson-3 WhatisNeuralNetwork:Overview,Applications,andAdvantages Lesson-4 NeuralNetworksTutorial Lesson-5 Top8DeepLearningFrameworks Lesson-6 Top10DeepLearningAlgorithmsYouShouldKnowin2021 Lesson-7 AnIntroductionToDeepLearningWithPython Lesson-8 WhatisTensorflow:DeepLearningLibrariesandProgramElementsExplained Lesson-9 HowToInstallTensorFlowonUbuntu Lesson-10 WhatIsTensorFlow2.0?TheBestGuidetoUnderstandTensorFlow Lesson-11 TensorFlowTutorialforBeginners:YourGatewaytoBuildingMachineLearningModels Lesson-12 ConvolutionalNeuralNetworkTutorial Lesson-13 RecurrentNeuralNetwork(RNN)TutorialforBeginners Lesson-14 TheBestIntroductiontoWhatGANsAre Lesson-15 WhatIsKeras?TheBestIntroductoryGuidetoKeras Lesson-16 FrequentlyaskedDeepLearningInterviewQuestionsandAnswers Lesson-17 TheUltimateGuidetoBuildingPowerfulKerasImageClassificationModels Lesson-18 WhatisNeuralNetwork:Overview,Applications,andAdvantagesLesson4of18BySimplilearnLastupdatedonJan31,2022610277PreviousNextTutorialPlaylistDeepLearningTutorialforBeginnersOverview WhatisDeepLearningandHowDoesItWork[Explained] Lesson-1 TheBestIntroductiontoDeepLearning-AStepbyStepGuide Lesson-2 Top10DeepLearningApplicationsUsedAcrossIndustries Lesson-3 WhatisNeuralNetwork:Overview,Applications,andAdvantages Lesson-4 NeuralNetworksTutorial Lesson-5 Top8DeepLearningFrameworks Lesson-6 Top10DeepLearningAlgorithmsYouShouldKnowin2021 Lesson-7 AnIntroductionToDeepLearningWithPython Lesson-8 WhatisTensorflow:DeepLearningLibrariesandProgramElementsExplained Lesson-9 HowToInstallTensorFlowonUbuntu Lesson-10 WhatIsTensorFlow2.0?TheBestGuidetoUnderstandTensorFlow Lesson-11 TensorFlowTutorialforBeginners:YourGatewaytoBuildingMachineLearningModels Lesson-12 ConvolutionalNeuralNetworkTutorial Lesson-13 RecurrentNeuralNetwork(RNN)TutorialforBeginners Lesson-14 TheBestIntroductiontoWhatGANsAre Lesson-15 WhatIsKeras?TheBestIntroductoryGuidetoKeras Lesson-16 FrequentlyaskedDeepLearningInterviewQuestionsandAnswers Lesson-17 TheUltimateGuidetoBuildingPowerfulKerasImageClassificationModels Lesson-18 TableofContentsViewMore HaveyoueverbeencuriousabouthowGoogleAssistantorApple’sSirifollowyourinstructions?Doyouseeadvertisementsforproductsyouearliersearchedforone-commercewebsites?Ifyouhavewonderedhowthisallcomestogether,ArtificialIntelligence(AI)worksonthebackendtoofferyouarichcustomerexperience.AnditisArtificialNeuralNetworks(ANN)thatformthekeytotrainmachinestorespondtoinstructionsthewayhumansdo.  ABriefHistoryofAI Thehumanbrainisthemostcomplexorganinthehumanbody.Ithelpsusthink,understand,andmakedecisions.Thesecretbehinditspowerisaneuron. Eversincethe1950s,scientistshavebeentryingtomimicthefunctioningofaneuronanduseittomakesmarterandbetterrobots.Afteralotoftrialanderror,humansfinallycreatedacomputerthatcouldrecognizehumanspeech.Itwasonlyaftertheyear2000thatpeoplewereabletomasterdeeplearning(asubsetofAI)thatwasabletoseeanddistinguishbetweenvariousimagesandvideos. Beforewetakeadetailedlookatwhatconstitutesaneuralnetwork,let’sgetarefresherontheconceptofdeeplearning. PostGraduatePrograminAIandMachineLearningInPartnershipwithPurdueUniversityExploreCourse WhatIsDeepLearning? Deeplearningisamachinelearningsubsetthatmakescomputersdowhatcomesnaturallytohumans:learnbyexample. Machinesgettrainedwithimagesasexamples,aprocessverydifferentfromhardwiringacomputerprogramtorecognizesomethingandlearn.Youdon'tcontrolhowitknows;youcontroltheaspectsthatgointoit.Thecomputeridentifiestheobjectbasedontheimagesfedearlier. Scientistsbuiltasyntheticformofabiologicalneuronthatpowersanydeeplearning-basedmachine. So,whatisaneuralnetwork? WhatIsaNeuralNetwork? Tounderstandhowanartificialneuronworks,weshouldfirstunderstandhowabiologicalneuronworks.   Dendrites  Thesereceiveinformationorsignalsfromotherneuronsthatgetconnectedtoit. CellBody Informationprocessinghappensinacellbody.Thesetakeinalltheinformationcomingfromthedifferentdendritesandprocessthatinformation. Axon  Itsendstheoutputsignaltoanotherneuronfortheflowofinformation.Here,eachoftheflangesconnectstothedendriteorthehairsonthenextone.  TheimageshownbelowdepictsanANN.  Thenetworkstartswithaninputlayerthatreceivesinputindataform. Thelinesconnectedtothehiddenlayersarecalledweights,andtheyadduponthehiddenlayers.Eachdotinthehiddenlayerprocessestheinputs,anditputsanoutputintothenexthiddenlayerand,lastly,intotheoutputlayer.  Lookingattheabovetwoimages,youcanobservehowanANNreplicatesabiologicalneuron. Inputtoaneuron-inputlayer Neuron-hiddenlayer Outputtothenextneuron-outputlayer Aneuralnetworkisasystemofhardwareorsoftwarepatternedaftertheoperationofneuronsinthehumanbrain.Neuralnetworks,alsocalledartificialneuralnetworks,areameansofachievingdeeplearning. Whenyouwanttofigureouthowaneuralnetworkfunctions,youneedtolookatneuralnetworkarchitecture. TheArchitectureofaNeuralNetwork HaveyoueveraskedSiriaquestion?Thedeviceanswersaccurately.Let’stakeacloserlookandseehowthevirtualassistantaccomplishesthisfeatofspeechrecognition. Therearefiverecognizedtypesofneuralnetworks. Single-layerfeed-forwardnetwork. Multilayerfeed-forwardnetwork. Singlenodewithitsownfeedback. Single-layerrecurrentnetwork. Multilayerrecurrentnetwork. Consider,forinstance,theneuralnetworkshownbelow,anexampleofasingle-layerrecurrentnetwork: Thereareinput,hidden,andoutputlayersonthenetwork.But,first,thenetworkneedstorecognizethesentence:Whatisthetime? Here,eachwordcomesinasapatternofsound.Then,thesentencegetssampledintodiscretesoundwaves. Let'sconsiderthefirstword:What  Youcanseethewaveformissplitbasedoneveryletter.NowwewillsplitthesoundwavefortheletterWintosmallersegments. Theamplitudevariesinthesoundwavewhenweanalyzetheletter'W,'asshownbelow. Wecollectthevaluesatintervalsandformanarray.Then,differentamplitudescomeinforotherletters,andwefeedthevarietyofamplitudestotheinputlayer. Randomweightsgetassignedtoeachinterconnectionbetweentheinputandhiddenlayers. Wealwaysstartwiththerandomkey,asassigningapresetvaluetotheweightstakesasignificantamountoftimewhentrainingthemodel.  Theweightsgetmultipliedwiththeinputs,andabiasisaddedtoformthetransferfunction.  Weightsgetassignedtotheinterconnectionbetweenthehiddenlayers.Theoutputofthetransferfunctionisfedasaninputtotheactivationfunction.Theworkfromonehiddenlayerbecomestheinputtothenext. FREEDataScienceWithPythonCourseGainMasteryinDataSciencewithPythonNowStartLearning Theacousticmodelcontainsthestatisticalrepresentationofeachsoundthatmakesaword.Sowestartbuildingtheseacousticmodels,andastheselayersseparatethem,they'llstartlearningwhatthedifferentmodelsrepresentforotherletters. Thelexiconcontainsthedatafordifferentpronunciationsofeveryword.Thelexiconisattheend,whereweendupwiththeABCD,identifyingtheotherlettersthere. Finally,wegetouroutputletter.Followingthesameprocessforeverywordandletter,theneuralnetworkrecognizesthesentenceyousaidoryourquestion. Notethattheterms“acousticmodel”and“lexicon”arespecifictothedomainofunderstandingspeech.Whendealingwithotherinputformats,you'llhavedifferentlabels,buttheprocessremainsthesame. MasterdeeplearningconceptsandtheTensorFlowopen-sourceframeworkwiththe DeepLearningCourse.Getskilledtoday! AdvantagesofNeuralNetwork ANNoutputsaren'tlimitedentirelybyinputsandresultsgiventotheminitiallybyanexpertsystem.Thisabilitycomesinhandyforroboticsandpatternrecognitionsystems. Thisneuralnetworkhasthepotentialforhighfaulttoleranceandcandebugordiagnoseanetworkonitsown.ANNcangothroughthousandsoflogfilesfromacompanyandsortthemout.Itiscurrentlyatedioustaskdonebyadministrators,butitwillsaveasignificantamountoftime,energy,andresourcesifitcanbeautomated. Nonlinearsystemscanfindshortcutstoreachcomputationallyexpensivesolutions.Weseethisinthebankingindustry,forexample,wheretheyworkonaparticularExcelspreadsheet,andastimegoesby,startbuildingcodesaroundit.Inover20years,theymightcreatearepertoireofallthesefunctions,andtheneuralnetworkrapidlycomesupwiththesameanswersotherwisedoneindays,weeks,orevenamonth,whendonebyalargebank. Sohowdoneuralnetworksapplytoday? ApplicationsofNeuralNetwork Withanenormousnumberofapplicationsimplementationseveryday,nowisthemostappropriatetimetoknowabouttheapplicationsofneuralnetworks,machinelearning,andartificialintelligence.Someofthemarediscussedbelow: HandwritingRecognition Neuralnetworksareusedtoconverthandwrittencharactersintodigitalcharactersthatamachinecanrecognize. Stock-Exchangeprediction Thestockexchangeisaffectedbymanydifferentfactors,makingitdifficulttotrackanddifficulttounderstand.However,aneuralnetworkcanexaminemanyofthesefactorsandpredictthepricesdaily,whichwouldhelpstockbrokers.  Currently,thisoperationisstillinitsinitialphases.However,youshouldknowthatoverthreeterabytesofdataadayaregeneratedfromtheUnitedStatesstockexchangealone.That'salotofdatatodigthrough,andyoumustsortitoutbeforeyoustartfocusingonevenasinglestock. FreeCourse:IntroductiontoAILearntheCoreAIConceptsandKeySkillsforFREEStartLearning TravelingIssuesofsalesprofessionals Thisapplicationreferstofindinganoptimalpathtotravelbetweencitiesinagivenarea.Neuralnetworkshelpsolvetheproblemofprovidinghigherrevenueatminimalcosts.However,theLogisticalconsiderationsareenormous,andwemustfindoptimaltravelpathsforsalesprofessionalsmovingfromtowntotown.  Imagecompression Theideabehindneuralnetworkdatacompressionistostore,encrypt,andrecreatetheactualimageagain.Therefore,wecanoptimizethesizeofourdatausingimagecompressionneuralnetworks.Itistheidealapplicationtosavememoryandoptimizeit. So,whatdoesthefutureofneuralnetworkslooklike? FutureofNeuralNetworks WiththerapidpacethatAIandmachinelearningarebeingadoptedbycompaniestoday,wecouldseemoreadvancementsintheapplicationsofneuralnetworksintheforeseeablefuture.AIandmachinelearningwillofferawealthofpersonalizedchoicesforusersworldwide.Forexample,allmobileandwebapplicationstrytogiveyouanenhancedcustomizedexperiencebasedonyoursearchhistory,andneuralnetworkscanmakethatpossible.  Hyper-intelligentvirtualassistantswillmakelifeeasier.IfyouhaveeverusedGoogleassistant,Siri,oranyotherproducts,youcanseehowthey'reslowlyevolving.Theymayevenpredictyouremailresponsesinthefuture! Wecanalsoexpectintriguingdiscoveriesonalgorithmstosupportlearningmethods.However,wearejustintheinfantstageofapplyingartificialintelligenceandneuralnetworkstotherealworld. Neuralnetworkswillbealotfasterinthefuture,andneuralnetworktoolscangetembeddedineverydesignsurface.Wealreadyhavealittleminineuralnetworkthatplugsintoaninexpensiveprocessingboardorevenintoyourlaptop.Insteadofthesoftware,focusingonthehardwarewouldmakesuchdevicesevenfaster. Neuralnetworkswillalsofindtheirwayintothefieldsofmedicine,agriculture,physics,research,andanythingelseyoucanimagine.Neuralnetworkswillalsofinditswayintothefieldsofmedicine,agriculture,physics,research,andanythingelseyoucanimagine. DoYouWantaCareerinMachineLearning? Theworldiswideopenforanybodywhowantstolearnneuralnetworksandexplorethefield'spotential.Themoreyouunderstandtheconcepts,thebetteryoucanapplythemtodifferentareasandturnthatknowledgeintoapromisingcareer. WhiletheadoptionofAIisgrowingwitheachpassingday,companiesworldwidearefacingashortageofITtalent.Simplilearn’sArtificialIntelligenceandMachineLearningBootcamp,deliveredinpartnershipwithIBMandfeaturingmasterclassesbyCaltechfacultyandIBMexperts,canhelpyoustartagreatnewcareerinthisexcitingandrapidlygrowingfield.  TheAIandMLbootcampcoversvitalconceptslikeStatistics,DataSciencewithPython,MachineLearning,DeepLearning,NLP,andReinforcementLearning,alldesignedandperfectedtoboostyourcareerasanAIandMLprofessional. AccordingtoIndeed,machinelearningengineersintheUnitedStatescanearnanaverageof$131,063peryear.PayscalereportsthatmachinelearningengineersinIndiamaybringinanannualaveragesalaryof₹732,566.Don’tdelay.CheckoutSimplilearn’smanyAIandMLcoursesandgetanexcitingandrewardingcareerinahotnewfieldofftheground! FindourDeepLearningwithKerasandTensorFlowOnlineClassroomtrainingclassesintopcities:NameDatePlaceDeepLearningwithKerasandTensorFlow19Mar-10Apr2022,WeekendbatchYourCityViewDetailsDeepLearningwithKerasandTensorFlow2Apr-24Apr2022,WeekendbatchSingaporeViewDetailsDeepLearningwithKerasandTensorFlow16Apr-8May2022,WeekendbatchYourCityViewDetailsAbouttheAuthorSimplilearnSimplilearnisoneoftheworld’sleadingprovidersofonlinetrainingforDigitalMarketing,CloudComputing,ProjectManagement,DataScience,IT,SoftwareDevelopment,andmanyotheremergingtechnologies.ViewMoreRecommendedProgramsDeepLearningwithKerasandTensorFlow18764LearnersArtificialIntelligenceEngineer17153LearnersLifetimeAccess**Lifetimeaccesstohigh-quality,self-pacede-learningcontent.ExploreCategoryFindDeepLearningwithKerasandTensorFlowinthesecitiesDeepLearningCourse(withKeras&TensorFlow)inSingaporeRecommendedResourcesWhatIsKeras?TheBestIntroductoryGuidetoKerasVideoTutorialDeepLearningInterviewGuideEbookKerasvsTensorflowvsPytorch:UnderstandingtheMostPopularDeepLearningFrameworksArticleProgramPreview:CaltechCTMEBootcampsinDataScienceandAI/MLWebinarWhatIsTensorFlow2.0?TheBestGuidetoUnderstandTensorFlowVideoTutorialMachineLearningCareerGuide:AcompleteplaybooktobecomingaMachineLearningEngineerEbookprevNext DisclaimerPMP,PMI,PMBOK,CAPM,PgMP,PfMP,ACP,PBA,RMP,SP,andOPM3areregisteredmarksoftheProjectManagementInstitute,Inc.



請為這篇文章評分?