Linoleic acid–good or bad for the brain? | npj Science of ...
文章推薦指數: 80 %
Linoleic acid (LA, 18:2n-6) is an essential n-6 polyunsaturated fatty acid (PUFA) required for normal growth and development at 1 to 2% of ... Skiptomaincontent Thankyouforvisitingnature.com.YouareusingabrowserversionwithlimitedsupportforCSS.Toobtain thebestexperience,werecommendyouuseamoreuptodatebrowser(orturnoffcompatibilitymodein InternetExplorer).Inthemeantime,toensurecontinuedsupport,wearedisplayingthesitewithoutstyles andJavaScript. Advertisement nature npjscienceoffood reviewarticles article Linoleicacid–goodorbadforthebrain? DownloadPDF DownloadPDF Subjects NeurochemistryOils APublisherCorrectiontothisarticlewaspublishedon01April2020 Thisarticlehasbeenupdated AbstractIncreasedintakeofomega-6richplantoilssuchassoybeanandcornoiloverthepastfewdecadeshasinadvertentlytripledtheamountofn-6linoleicacid(LA,18:2n-6)inthediet.AlthoughLAisnutritionally“essential”,verylittleisknownabouthowitaffectsthebrainwhenpresentinexcess.ThisreviewprovidesanoverviewonthemetabolismofLAbythebrainandtheeffectsofexcessdietaryLAintakeonbrainfunction.Pre-clinicalevidencesuggeststhatexcessdietaryLAincreasesthebrain’svulnerabilitytoinflammationandlikelyactsviaitsoxidizedmetabolites.Inhumans,excessmaternalLAintakehasbeenlinkedtoatypicalneurodevelopment,butunderlyingmechanismsareunknown.ItisconcludedthatexcessdietaryLAmayadverselyaffectthebrain.ThepotentialneuroprotectiveroleofreducingdietaryLAmeritsclinicalevaluationinfuturestudies. IntroductionLinoleicacid(LA,18:2n-6)isanessentialn-6polyunsaturatedfattyacid(PUFA)1requiredfornormalgrowthanddevelopmentat1to2%ofdailyenergy.2LAhasbecomeubiquitousinWesterndietsoverthepastfewdecadesduetoagriculturalshiftstowardshigh-LAsoybeanandcornoilsduringthelate1930s,resultinginagreaterthan3-foldincreaseinintake.3,4HistoriclevelsofLAintakerangedbetween1to2%ofdailycaloriespre-1930s,butcurrentlyaveragemorethan7%ofdailycalories.4Basedoneconomicdisappearancedata,themajorityofLAintheUSdietcomesfromsoybeanoil.4AmongstotherdietaryPUFAsimportantforoptimalhealth,LAistheonlyonethathasmarkedlychangedinthedietoverthepastfewdecades.Contrarytocommonmisconception,theintakeofLA’selongation-desaturationproduct,arachidonicacid(AA,20:4n-6),andtheessentialn-3fattyacid,alpha-linolenicacid(ALA,18:3n-3),anditselongation-desaturationproductseicosapentaenoicacid(EPA)anddocosahexaenoicacid(DHA),hasremainedrelativelyconstantat<1%energysincetheearly1900s.4ExcessLAinthefoodsupplyhasshiftedthen-6ton-3ratiofrom4:1to20:1.4,5Surprisingly,littleisknownabouthowthisincreaseindietaryLAaffectsthebrain.ItismainlyviewedasanessentialprecursortoAA,whichisimportantforneurodevelopmentandotherphysiologicalprocesses.6Despitebeingamajorpartofthediet,LAhasbeenconsiderednon-functionalinthebrainbecauseofitslowconcentration(<2%oftotalfattyacids)comparedtopalmiticacid(16:0),stearicacid(18:0),oleicacid(18:1n-9),DHA,andAAwhichmakeupover84%ofbrainfattyacidsinratsandhumans.7,8LAisknowntoenterthebrainatarateof~4 pmol/g/s,whichiscomparabletotherateofentryofAA,DHA,andotherfattyacidsintothebrain.9,10However,unlikeAAandDHAwhichmostlyincorporateintobrainmembranephospholipids,themajority(~59%)ofLAenteringthebrainisrapidlyβ-oxidizedintoaqueousproducts,likelycomposedofcarbondioxide,acetate,andotherpolarmetabolitesofβ-oxidation.9Someofthe2-carbonacetatemoleculesproducedbyβ-oxidationarerecycledintocholesterolviadenovolipidsynthesispathwayswithinthebrain.9,11LAisalsoaprecursortooxidizedproductsknownas‘oxidizedlinoleicacidmetabolites’(OXLAMs)thatareproducedbyauto-oxidationorenzymaticallyvialipoxygenase(LOX),cyclooxygenase(COX),cytochromeP450(CYP450),andsolubleepoxidehydrolase(sEH).12,13,14,15OXLAMsarelipidmediatorsknowntoregulatepainandinflammatorysignalinginperipheraltissue,16,17,18,19wheretheyareabundant.18,20Inthebrain,theyarepresumedtobeformedbyLOX,COX,CYP450,andsEHenzymes,buttheirrolethereisnotfullyunderstood.ThisreviewhighlightsthecurrentstateofknowledgeontheroleandmetabolismofLAandOXLAMsinthebrain.StudieslinkingLAandOXLAMstoreportedbiochemical,neuropathological,orbehavioralendpointsinchickens,rodents,andhumansarediscussed,anddirectionsforfutureresearchareproposed.EffectsofLAorOXLAMsonchickensStudiesinthelate1950sand1970sshowedthatchicksfedavitamin(V)-EdeficientdietcontainingLAdevelopedencephalomalacia,21,22,23,24,25aneurodegenerativeconditioncharacterizedbynecrosis,edema,andmicrovasculatureabnormalitiesthatcanleadtoataxiaanddeath.26Table1providesadetailedsummaryofallthesestudies,whicharediscussedherein.Table1EffectofLAorOXLAMsonneurologicaloutcomesinchickens.FullsizetableDametal.reportedthat2-day-oldchicksfedaV-Edeficientdietcontaining1.5%ethyl-LA(weightpercent)fromthe2nddayoflifeonwards,diedfromencephalomalaciawithin28days(11outof12chicks),comparedtochicksfedaV-Edeficientdietcontainingethyl-ALA(0outof12)oraV-EdeficientbasaldietlackingbothLAandALA(0outof12).21Inafollow-upstudy,theauthorsfoundthataV-Edeficientdietcontaining1.5%ethyl-AAinducedencephalomalaciafasterthanaV-Edeficientdietcontaining1.5%ethyl-LAorlard(mixedsourceofLAandAA).24ThesestudiesdemonstratedthatwhenV-Eisabsentfromthediet,AAandtoalesserextentLA,damagethebrainofyoungchicks.ALAcausednodamage.Follow-upstudiesinchickensdemonstratedthatoxidizedLAmetabolites(i.e.,OXLAMs)werethelikelycauseofencephalomalacia,andthatthiseffectwaslinkedbymaternaldietaryLAcontent.BartovandBornsteinreportedthatmaternalintakeofa4%soybeanoil(relativelyhighinLA)or4%tallow(lowinLA)dietcontaining5or25 mg/kgα-tocopherolacetateeach,from6to11monthsofage,reducedegg-yolkLAconcentrationinthetallowgroup(independentofV-Edietarycontent),anddecreasedV-Econcentrationinyolkofbothgroupsfedthetallowandsoybeandietscontaininglowα-tocopherolacetate(5 mg/kg).23ChicksfromeachmaternalgroupwerethenfedaV-Efreedietcontaining4%or10%oxidizedsaffloweroilhighinLA(~70%)for31daystoinduceencephalomalacia.Oxidationwasachievedbyheatingtheoilat145 °Cfor24 h.Theauthorsreportedthatregardlessofsaffloweroilcontentofthechickdiet(4or10%level),chicksborntohensthatwerefedthe4%soybeanoildietcontaininglow(5 mg/kg)α-tocopherolacetatelevelsexperiencedasignificantlyhigherfrequencyofataxiaandmortalitycomparedtochicksbornhensfed4%soybeanoilcontaining25 mg/kgα-tocopherol,orbeeftallowcontainingeither5or25 mg/kgα-tocopherol.23Hence,ahighLAmaternaldietlowinV-Eacceleratedthedevelopmentofataxiaandencephalomalacia-relatedmortalityinchickoffspringmaintainedonaV-Efreedietcontainingoxidizedsaffloweroil.LoweringmaternaldietaryLAorsupplementingitwithV-Ewasprotective.Budowskietal.performedaseriesofexperimentstounderstandthecauseofataxiaandmortailitylinkedtoencephalomalacia.25TheyfedaV-Efreedietcontainingoxidizedsaffloweroilornon-heatedsaffloweroilmethylestersat4%or10%(w/w)tochicksfor2to3weeks.At4%oilcontent,theincidenceofataxiaandmortalitywerehigherinthegroupfedthenon-heatedsaffloweroilcomparedtothegroupfedoxidizedsaffloweroil.At10%,ataxiaandmortalitywerehigherinthegroupfedoxidizedsafflowercomparedtothegroupfednon-heatedsaffloweroil.ThefindingssuggestthatintheabsenceofV-E,oxidizedsaffloweroilat10%(w/w)inducedmoreneurologicaldeficitsthanat4%.Also,thefactthatataxiaanddeathwereobservedinthegroupfed4%non-heatedsaffloweroil,suggeststheabsenceofdietaryV-Emightinduceoilauto-oxidationofLA(themainPUFAinsaffloweroil).ItisnotknownwhethertheOXLAMspeciesgeneratedbyauto-oxidationduetotheabsenceofV-Einthediet,differfromthosegeneratedbyheating.Notably,thisstudydidnotincludeacontrolgroupprovidedwithV-Einthediet.TotestwhetherV-Ewasprotective,theauthorsprovided1-day-oldmalechickswithnon-heatedorheated10%(w/w)saffloweroilmethylesterslackingorcontaining1 µg/kgV-Efor19days.25Ataxiaandmortalitywererelativelyhighinthegroupsfednon-heatedoilslackingorcontainingV-E(65–70%ataxia;20–30%mortality).InthegroupsprovidedwithoxidizedoilwithorwithoutV-E,theincidenceofataxiaandmortalityweremuchincreased(90–95%ataxia,70%mortality),irrespectiveofV-Econtent.ItispossiblethathigherdosesofV-Emighthavebeenmoreeffectiveinreducingmortalityandtheincidenceofataxiabylimitingauto-oxidation,particularlyinthenon-heatedsaffloweroilgroup.Theauthorsalsointroducedthepolarfraction(at0.3%w/w)totheV-Efreedietcontaining4%saffloweroil,andfoundthatitinducedataxiaandincreasedmortalitycomparedtothesamebackgrounddietlackingthepolarextracts.25BecauseoleicacidandLAarethemainunsaturatedfattyacidsinsaffloweroil,theauthorsintroducedoleicacidandLAderivedketoneesters(i.e.,oxidizedfattyacids)at0.2%and0.12%,respectively,tothesameV-Efreedietscontaining4%saffloweroil.Theyfoundthattheincidenceofataxiawas50%and80%withtheoleicacidandLAketo-esters,respectively,andthushigherthanthedietslackingtheseoxidizedcompounds.AseparatestudybyKokatnuretal.showedthattheadditionof0.25%(w/w)12-oxo-cos-9-octadecenoicacid,12-oxo-octadecanoicacid,12-oxo-trans-10-octadecenoicacid,or12-oxo-cos-9-octadecenoicacidmethylestertoaV-Edeficientbasaldietcontaining10%cornoil,inducedencephalomalaciain42–100%ofchickenscomparedto17%inthosefedthebasaldiet.27Theauthorsalsodeterminedthataslittleas0.05%ofketonefattyacidsinducedencephalomalaciaandthatthiseffectwasexacerbatedbyaddingmorecornoiltothediet(from2.5to10%w/w).27ThesestudiesprovidedirectevidencethatOXLAMs,andtoalesserextentoxidizedoleicacidmetabolites,induceataxiaandmortalityduetoencephalomalaciainchickens.IntheBudowskietal.study,theadministrationoftheanti-coagulantdicumaroltoaV-Efreedietcontaining4%saffloweroilreducedtheincidenceofataxiaandmortality,25suggestingthattheneurotoxiceffectsofOXLAMsmaybecausedbybloodcoagulationanddisturbancesinthebrain’smicrovasculature.ThisisinagreementwithastudybyFischeretal.whoshowedmorphologicchangesincerebralvasculature,characteristicofpre-ceroidformationinadultchickensfedan8%LAdietlackingV-E,comparedtochickensonasimilardietcontainingV-E.22Fullydevelopedceroidshavebeenlinkedtoneurodegeneration.28EffectsofLAorOXLAMsonrodentsThefewstudiesthatexploredthedirectroleofLAanditsmetabolitesinrodentshaveshownthatLAisinvolvedinregulatingbrainimmunity,seizurethreshold,andneuronalsignaling,andthatsomeoftheseeffectsaremediatedbyitsoxidizedmetabolites(i.e.,OXLAMs).Inrats,LAloweringwasfoundtoattenuateLPS-inducedneuroinflammation,reducebrainconcentrationofpro-inflammatorylipidautacoidsandincreasebrainlevelsofanti-inflammatorylipidmediators.Tahaetal.reportedthatcomparedtoa“high”5.2%energyLAdiet,chronicconsumptionofa“low”0.4%energyLAdietfor15–18weeks,reducedtheincorporationrateofradiolabeledAAintothebrainandpreventedtheincreaseinbrainAA-derivedprostaglandinE2concentrationandCOX-2activityinducedby2-daylipopolysaccharide(LPS)administrationintothe4thventricle.29TwoindependentstudiesreportedthatdietaryLAlowering(from5.2%to0.4%energy)reducedbrainconcentrationsofpro-inflammatoryAA-derivedeicosanoids(e.g.,5-Hydroxyeicosatetraenoicacid)andincreasedconcentrationsofanti-inflammatoryEPAorDHAderivedmetabolites.30,31ThismaypartiallyexplainwhyLAloweringincreasedresiliencetoLPS-inducedneuroinflammationintheTahaetal.study.29AcuteadministrationofLAwasreportedtoconferseizureprotectioninrats.Wheninfusedintravenouslyatadoseof0.028 mg/kg,itdecreasedtheincidenceoftonic-clonicconvulsionsby3-fold,butincreasedtheincidenceofcorticalspike-wavedischargesby1.5to2folds.32Voskuyletal.showedthatintravenousadministrationof56–64 mg/kgLAraisedcorticalfocalandgeneralizedseizurethresholdsby3-foldand1.3–9.0-fold,respectively,inacorticalstimulationseizuremodelcomparedtosalineandoleicacidcontrols.33TheeffectofchronicLAadministrationonseizurethresholdshasnotbeentested.RecentstudiessuggestthattheeffectsofLAinthebrainarelikelymediatedbyOXLAMs.Hennebelleetal.showedthatOXLAMsareincreasedinvariousratbrainregionsfollowingacuteischemicinjury,possiblyduetotheirinvolvementintheresponsetoischemicbraininjury.34DirectapplicationofLAitselftorathippocampalslicesdidnotalterpaired-pulsefacilitationwithinsomaordendrites,whereasLA-derived13-hydroxyoxtadecadieonicacid(13-HODE)increasedsomaticpairedpulsefacilitation.34AlthoughtheHennebelleetal.studyraisesthepossibilitythatLA’seffectsonthebrainmightbemediatedbyOXLAMs,34itonlytestedoneOXLAM(13-HODE).Futurestudiesshouldaddresstheisolatedandcollectiveeffectsofotherhydrox,epoxy,dihydroxy,trihydroxy,andketonemetabolitesofLAonneurotransmissionandotherbrainprocesses.AlthoughOXLAMsareknowntobeabundantinrodentbrain,31,34itisnotknownwhethertheyarepreferentiallyformedinthebrainfromLA,orincorporateddirectlyfromcirculatingOXLAMsprovidedinthediet.Thisissuewasrecentlyaddressedbytwostudies.Tahaetal.fedratsagradedLAdiet(0.4%,5.2%,and10.4%energy)for15–18weeks,andshowedthatincreasingdietaryLAincreasedcerebralcortexandcerebellumOXLAMconcentrationsinadose-dependentmanner(Fig.1).31Inafollowupstudy,Ramsdenetal.fedmiceahighLAdiet(17%energy),oralowLAdiet(4%energy)withorwithoutoxidizedcornoilasasourceofOXLAMs.35TheauthorsfoundnoevidenceofdietaryOXLAMincorporationintothebrain,butconsistentwithapreviousreport,thehighLAdietincreasedbrainOXLAMconcentrationscomparedtothelowLAdietwithorwithoutOXLAMs.35ThesestudiessuggestthatdietaryOXLAMsarenotreadilyincorporatedintorodent(mouse)brain,andthatLAisthemainsourceofOXLAMsinthebrain.BehavioralstudiesondietaryOXLAMsinrodentsareyettobeperformed,ashasbeendonepreviouslyinchickens.Notably,althoughthechickenstudiesoutlinedinTable1showedaneffectofOXLAMsonbehavior,noneassessedtheirbioavailability.Inrodents,dietaryLAhydroperoxideswerereportedtodegradeintoaldehydesinthestomach,raisingthepossibilitythatthereportedeffectsofOXLAMsonthebrainmightbemediatedbytheirdegradationproducts.36Fig.1Effectofincreasingdietarylinoleicacid(LA)onunesterifiedoxidizedlinoleicacidmetabolite(OXLAM)concentrationsinratcerebralcortex.AdaptedfromTahaetal.,31EpOMEepoxyoctadecamonoenoicacid,THFtetrahydrofuran-diols,EKODEepoxyketooctadecenoicacid,HODEhydroxyoctadecadienoicacid,oxo-ODEOxo-octadecadienoicacid,DiHOMEdihydroxyoctadecamonoenoicacid,TriHOMEtrihydroxyoctadecamonoenoicacid.Dataaregraphedasmedianandinterquartileinterval(IQR)representingthe25thand75thpercentiles.*p 9.7%offattyacids)wasassociatedwithreducedmotorandcognitivescoresin2-to3-year-oldinfants.43Inthesamecohort,maternalbreastmilkLApercentcompositionwasassociatedwithreducedverbalIQat5to6yearsofage.44Infact,childrenbreastfedwiththehighestlevelsofLAhadcognitivescorescomparabletochildrenwhowereneverbreastfed.43TheseeffectswereindependentofAAorDHAbreastmilkcomposition,suggestingadirectimpactofexcessbreastmilkLA(andhencematernalintake)onbraindevelopment.Consistentwiththesefindings,LassekandGaulinfoundaninversecorrelationbetweenbreastmilkLApercentcompositionandcognitivescoresin15-year-oldchildren,suggestingalong-lastingimpactofmaternalLAonoffspringcognitiveskills.45Steenweg-deGraaffetal.alsoreportedasignificantpositiveassociationbetweenmaternalplasmaLAcompositionmeasuredatmid-pregnancyandtheriskofautistictraitsinchildrenattheageof6years.46AmorerecentstudyfoundthatprenatalintakeofdietshighintheratioofLAtoALA,wasassociatedwitha2-foldincreaseintheriskofdelayedpsychomotorandmentaldevelopmentalin6monthsinfants.47ConclusionPre-clinicalandclinicalstudiesdispelpreviousassumptionsthatLAisabenignfattyacidinthebrain.Onthecontrary,whenpresentinexcessandchronically,itinducesataxiainchickens,promotesneuroinflammationinratsandislinkedtoabnormalneurodevelopmentinhumans.LAadministeredacutelytoratsconfersseizureprotection,althoughitschroniceffectsonseizureshasnotbeentested.RecentanimalstudiessuggestthattheeffectsofLAmightbemediatedbyOXLAMsgeneratedfromLAenteringthebrain.AlthoughOXLAMsarepresentinthediet,48theextentoftheirbioavailabilityandaccumulationinthebrainfromdietarysourcesappearstobeminimal.35,36However,furtherassessmentoftheirdegradationproductsonbrainneurophysiologyandotherorgansiswarranted.ChronicconsumptionoflowLAdietsmightprotectthebrainagainstinflammation,asevidencedbyratstudiesshowingananti-inflammatorylipidomeinthebrainsofratsfedalowLAdiet,29,30,31andhumanstudiesshowingthatLAloweringcombinedwithEPAandDHAreducedheadachefrequencyinpatientswithdrug-resistantmigraines.38,39Inconclusion,thisreviewpresentsevidencethatexcessLAinthefoodsupplymightadverselyaffectthebrain.ThepotentialbenefitofLAloweringmeritsdetailedevaluationinwell-designedandadequately-poweredclinicalstudies,totestwhetherthistranslatesintotangiblereductionsintheriskofneurodegenerativedisordersandneurodevelopmentalabnormalitiesatapopulationlevel. Changehistory12February2021ACorrectiontothispaperhasbeenpublished:https://doi.org/10.1038/s41538-020-0066-4ReferencesBurr,G.&Burr,M.M.Onthenatureandroleofthefattyacidsessentialinnutrition.J.Biol.Chem.86,587–621(1930).CAS GoogleScholar Hansen,A.E.,Haggard,M.E.,Boelsche,A.N.,Adam,D.J.&Wiese,H.F.Essentialfattyacidsininfantnutrition.III.Clinicalmanifestationsoflinoleicaciddeficiency.J.Nutr.66,565–576(1958).CAS PubMed GoogleScholar Micha,R.etal.Global,regional,andnationalconsumptionlevelsofdietaryfatsandoilsin1990and2010:asystematicanalysisincluding266country-specificnutritionsurveys.BMJ348,g2272(2014).PubMed PubMedCentral GoogleScholar Blasbalg,T.L.,Hibbeln,J.R.,Ramsden,C.E.,Majchrzak,S.F.&Rawlings,R.R.Changesinconsumptionofomega-3andomega-6fattyacidsintheUnitedStatesduringthe20thcentury.Am.J.Clin.Nutr.93,950–962(2011).CAS PubMed PubMedCentral GoogleScholar Simopoulos,A.P.Anincreaseintheomega-6/omega-3fattyacidratioincreasestheriskforobesity.Nutrients8,128(2016).PubMed PubMedCentral GoogleScholar Brenna,J.T.Arachidonicacidneededininfantformulawhendocosahexaenoicacidispresent.Nutr.Rev.74,329–336(2016).PubMed GoogleScholar Taha,A.Y.,Cheon,Y.,Ma,K.,Rapoport,S.I.&Rao,J.S.Alteredfattyacidconcentrationsinprefrontalcortexofschizophrenicpatients.J.Psychiatr.Res.47,636–643(2013).PubMed PubMedCentral GoogleScholar Taha,A.Y.etal.Alteredlipidconcentrationsofliver,heartandplasmabutnotbraininHIV-1transgenicrats.ProstaglandinsLeukot.Ess.Fat.Acids87,91–101(2012).CAS GoogleScholar DeMar,J.C.Jretal.Brainelongationoflinoleicacidisanegligiblesourceofthearachidonateinbrainphospholipidsofadultrats.Biochim.Biophys.Acta1761,1050–1059(2006).CAS PubMed GoogleScholar Chen,C.T.,Green,J.T.,Orr,S.K.&Bazinet,R.P.Regulationofbrainpolyunsaturatedfattyaciduptakeandturnover.ProstaglandinsLeukot.Ess.Fat.Acids79,85–91(2008).CAS GoogleScholar Cunnane,S.C.,Trotti,D.&Ryan,M.A.Specificlinoleatedeficiencyintheratdoesnotpreventsubstantialcarbonrecyclingfrom[(14)C]linoleateintosterols.J.LipidRes.41,1808–1811(2000).CAS PubMed GoogleScholar Laneuville,O.etal.Fattyacidsubstratespecificitiesofhumanprostaglandin-endoperoxideHsynthase-1and-2.Formationof12-hydroxy-(9Z,13E/Z,15Z)-octadecatrienoicacidsfromalpha-linolenicacid.J.Biol.Chem.270,19330–19336(1995).CAS PubMed GoogleScholar Funk,C.D.&Powell,W.S.Metabolismoflinoleicacidbyprostaglandinendoperoxidesynthasefromadultandfetalbloodvessels.Biochim.Biophys.Acta754,57–71(1983).CAS PubMed GoogleScholar Reinaud,O.,Delaforge,M.,Boucher,J.L.,Rocchiccioli,F.&Mansuy,D.Oxidativemetabolismoflinoleicacidbyhumanleukocytes.Biochem.Biophys.Res.Commun.161,883–891(1989).CAS PubMed GoogleScholar Bull,A.W.,Earles,S.M.&Bronstein,J.C.Metabolismofoxidizedlinoleicacid:distributionofactivityfortheenzymaticoxidationof13-hydroxyoctadecadienoicacidto13-oxooctadecadienoicacidinrattissues.Prostaglandins41,43–50(1991).CAS PubMed GoogleScholar Ramsden,C.E.etal.Asystemsapproachfordiscoveringlinoleicacidderivativesthatpotentiallymediatepainanditch.Sci.Signal10,eaal5241(2017).PubMed PubMedCentral GoogleScholar Patwardhan,A.M.,Scotland,P.E.,Akopian,A.N.&Hargreaves,K.M.ActivationofTRPV1inthespinalcordbyoxidizedlinoleicacidmetabolitescontributestoinflammatoryhyperalgesia.Proc.NatlAcad.Sci.USA106,18820–18824(2009).CAS PubMed GoogleScholar Schuster,S.etal.Oxidizedlinoleicacidmetabolitesinducelivermitochondrialdysfunction,apoptosisandNLRP3activationinmice.J.LipidRes.59(9),1597–1609(2018).CAS PubMed PubMedCentral GoogleScholar Warner,D.R.etal.Dietarylinoleicacidanditsoxidizedmetabolitesexacerbateliverinjurycausedbyethanolviainductionofhepaticproinflammatoryresponseinmice.Am.J.Pathol.187,2232–2245(2017).CAS PubMed PubMedCentral GoogleScholar Ramsden,C.E.etal.Dietarylinoleicacid-inducedalterationsinpro-andanti-nociceptivelipidautacoids:Implicationsforidiopathicpainsyndromes?Mol.Pain.12,1–14(2016).CAS GoogleScholar Dam,H.,Nielsen,G.K.,Prange,I.&Sondergaard,E.InfluenceoflinoleicandlinolenicacidsonsymptomsofvitaminEdeficiencyinchicks.Nature182,802–803(1958).CAS PubMed GoogleScholar Fischer,V.W.&Nelson,J.S.Cerebrovascularchangesintocopherol-depletedchicks,fedlinoleicacid.J.Neuropathol.Exp.Neurol.32,474–483(1973).CAS PubMed GoogleScholar Bartov,I.&Bornstein,S.Susceptibilityofchickstonutritionalencephalopathy:effectoffatandalpha-tocopherolcontentofthebreederdiet.Poult.Sci.59,264–267(1980).CAS PubMed GoogleScholar Dam,H.&Sondergaard,E.Theencephalomalaciaproducingeffectofarachidonicandlinoleicacids.Z.Ernahrungswiss2,217–222(1962).CAS PubMed GoogleScholar Budowski,P.,Bartov,I.,Dror,Y.&Frankel,E.N.Lipidoxidationproductsandchicknutritionalencephalopathy.Lipids14,768–772(1979).CAS PubMed GoogleScholar Wolf,A.&Pappenheimer,A.M.Thehistopathologyofnutritionalencephalomalaciaofchicks.J.Exp.Med.54,399–405(1931).CAS PubMed PubMedCentral GoogleScholar Kokatnur,M.G.,Okui,S.,Kummerow,F.A.&Scott,H.M.Effectoflongchainketoacidsonencephalomalaciainchicks.Proc.Soc.Exp.Biol.Med.104,170–171(1960).CAS PubMed GoogleScholar Seehafer,S.S.&Pearce,D.A.Yousaylipofuscin,wesayceroid:definingautofluorescentstoragematerial.Neurobiol.Aging27,576–588(2006).CAS PubMed GoogleScholar Taha,A.Y.etal.Dietarylinoleicacidloweringreduceslipopolysaccharide-inducedincreaseinbrainarachidonicacidmetabolism.Mol.Neurobiol.54,4303–4315(2017).CAS PubMed GoogleScholar Lin,L.E.etal.Chronicdietaryn-6PUFAdeprivationleadstoconservationofarachidonicacidandmorerapidlossofDHAinratbrainphospholipids.J.LipidRes.56,390–402(2015).CAS PubMed PubMedCentral GoogleScholar Taha,A.Y.etal.Regulationofratplasmaandcerebralcortexoxylipinconcentrationswithincreasinglevelsofdietarylinoleicacid.ProstaglandinsLeukot.Ess.Fat.Acids138,71–80(2018).CAS GoogleScholar Ekici,F.,Gurol,G.&Ates,N.Effectsoflinoleicacidongeneralizedconvulsiveandnonconvulsiveepilepticseizures.TurkishJ.Med.Sci.44,535–539(2014).CAS GoogleScholar Voskuyl,R.A.,Vreugdenhil,M.,Kang,J.X.&Leaf,A.Anticonvulsanteffectofpolyunsaturatedfattyacidsinrats,usingthecorticalstimulationmodel.Eur.J.Pharm.341,145–152(1998).CAS GoogleScholar Hennebelle,M.etal.Linoleicacidparticipatesintheresponsetoischemicbraininjurythroughoxidizedmetabolitesthatregulateneurotransmission.Sci.Rep.7,4342(2017).PubMed PubMedCentral GoogleScholar Ramsden,C.E.etal.Effectsofdietsenrichedinlinoleicacidanditsperoxidationproductsonbrainfattyacids,oxylipins,andaldehydesinmice.Biochim.Biophys.Acta1863,1206–1213(2018).CAS GoogleScholar Kanazawa,K.&Ashida,H.Dietaryhydroperoxidesoflinoleicaciddecomposetoaldehydesinstomachbeforebeingabsorbedintothebody.Biochim.Biophys.Acta1393,349–361(1998).CAS PubMed GoogleScholar Wang,D.D.etal.Associationofspecificdietaryfatswithtotalandcause-specificmortality.JAMAIntern.Med.176,1134–1145(2016).PubMed PubMedCentral GoogleScholar Ramsden,C.E.etal.Targetedalterationsindietaryn-3andn-6fattyacidsimprovelifefunctioningandreducepsychologicaldistressamongpatientswithchronicheadache:asecondaryanalysisofarandomizedtrial.Pain156,587–596(2015).CAS PubMed PubMedCentral GoogleScholar Ramsden,C.E.etal.Targetedalterationofdietaryn-3andn-6fattyacidsforthetreatmentofchronicheadaches:arandomizedtrial.Pain154,2441–2451(2013).CAS PubMed GoogleScholar Sylvestre,D.A.&Taha,A.Y.Long-chainomega-3polyunsaturatedfattyacidsandneuroinflammation-Efficacymaydependondietaryalpha-linolenicandlinoleicacidbackgroundlevels.BrainBehav.Immun.76,3–4(2019).CAS PubMed GoogleScholar Putnam,J.C.,Carlson,S.E.,DeVoe,P.W.&Barness,L.A.Theeffectofvariationsindietaryfattyacidsonthefattyacidcompositionoferythrocytephosphatidylcholineandphosphatidylethanolamineinhumaninfants.Am.J.Clin.Nutr.36,106–114(1982).CAS PubMed GoogleScholar Jenness,R.Thecompositionofhumanmilk.Semin.Perinatol.3,225–239(1979).CAS PubMed GoogleScholar Bernard,J.Y.etal.Theassociationbetweenlinoleicacidlevelsincolostrumandchildcognitionat2and3yintheEDENcohort.Pediatr.Res.77,829–835(2015).CAS PubMed GoogleScholar Bernard,J.Y.etal.Breastfeeding,polyunsaturatedfattyacidlevelsincolostrumandchildintelligencequotientatage5-6years.J.Pediatr.183,43–50e43(2017).CAS PubMed GoogleScholar Lassek,W.D.&Gaulin,S.J.Linoleicanddocosahexaenoicacidsinhumanmilkhaveoppositerelationshipswithcognitivetestperformanceinasampleof28countries.ProstaglandinsLeukot.Ess.Fat.Acids91,195–201(2014).CAS GoogleScholar Steenweg-deGraaff,J.etal.Maternalfattyacidstatusduringpregnancyandchildautistictraits:thegenerationRstudy.Am.J.Epidemiol.183,792–799(2016).PubMed GoogleScholar Kim,H.,Lee,E.,Kim,Y.,Ha,E.H.&Chang,N.Associationbetweenmaternalintakeofn-6ton-3fattyacidratioduringpregnancyandinfantneurodevelopmentat6monthsofage:resultsoftheMOCEHcohortstudy.Nutr.J.16,23(2017).PubMed PubMedCentral GoogleScholar Richardson,C.E.etal.Lipidomicanalysisofoxidizedfattyacidsinplantandalgaeoils.J.Agric.FoodChem.65,1941–1951(2017).CAS PubMed PubMedCentral GoogleScholar DownloadreferencesAcknowledgementsTheauthoracknowledgesDr.ChrisRamsdenfordrawinghisattentiontosomeofthechickenstudiescitedherein.Dr.MarieHennebelleisthankedforcreatingFig.1.AuthorinformationAffiliationsDepartmentofFoodScienceandTechnology,CollegeofAgricultureandEnvironmentalSciences,UniversityofCalifornia,Davis,CA,95616,USAAmeerY.TahaAuthorsAmeerY.TahaViewauthorpublicationsYoucanalsosearchforthisauthorin PubMed GoogleScholarContributionsTheauthorwrotethepaper.CorrespondingauthorCorrespondenceto AmeerY.Taha.Ethicsdeclarations Competinginterests Theauthordeclaresnocompetinginterests. AdditionalinformationPublisher’snoteSpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.Supplementaryinformation figurepermissionRightsandpermissions OpenAccessThisarticleislicensedunderaCreativeCommonsAttribution4.0InternationalLicense,whichpermitsuse,sharing,adaptation,distributionandreproductioninanymediumorformat,aslongasyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicense,andindicateifchangesweremade.Theimagesorotherthirdpartymaterialinthisarticleareincludedinthearticle’sCreativeCommonslicense,unlessindicatedotherwiseinacreditlinetothematerial.Ifmaterialisnotincludedinthearticle’sCreativeCommonslicenseandyourintendeduseisnotpermittedbystatutoryregulationorexceedsthepermitteduse,youwillneedtoobtainpermissiondirectlyfromthecopyrightholder.Toviewacopyofthislicense,visithttp://creativecommons.org/licenses/by/4.0/. ReprintsandPermissionsAboutthisarticleCitethisarticleTaha,A.Y.Linoleicacid–goodorbadforthebrain?. npjSciFood4,1(2020).https://doi.org/10.1038/s41538-019-0061-9DownloadcitationReceived:03September2018Accepted:29October2019Published:02January2020DOI:https://doi.org/10.1038/s41538-019-0061-9SharethisarticleAnyoneyousharethefollowinglinkwithwillbeabletoreadthiscontent:GetshareablelinkSorry,ashareablelinkisnotcurrentlyavailableforthisarticle.Copytoclipboard ProvidedbytheSpringerNatureSharedItcontent-sharinginitiative Furtherreading ChemicalprofilingandantioxidantactivityofEquisetumramosissimumDesf.stemextract,apotentialtraditionalmedicinalplantforurinarytractinfections JeyalatchaganSureshkumar SingamoorthyAmalraj MuniappanAyyanar FutureJournalofPharmaceuticalSciences(2021) Artisanaloilobtainedfrominsects’larvae(Speciomerusruficornis):fattyacidscomposition,physicochemical,nutritionalandantioxidantpropertiesforapplicationinfood OrquídeaVasconcelosdosSantos PamelaCristinaSodréDias BarbaraElisabethTeixeira-Costa EuropeanFoodResearchandTechnology(2021) #Healthy:smartdigitalfoodsafetyandnutritioncommunicationstrategies—acriticalcommentary JulieL.Schiro LiranChristineShan PatrickWall npjScienceofFood(2020) DownloadPDF AssociatedContent Collection LeadingResearchinNeuroscience Advertisement Explorecontent Researcharticles Reviews&Analysis News&Comment Collections FollowusonTwitter Signupforalerts RSSfeed Aboutthejournal Aims&Scope JournalInformation Contenttypes AbouttheEditors Contact OpenAccess ArticleProcessingCharges Editorialpolicies JournalMetrics AboutthePartner CallsforPapers Publishwithus ForAuthors&Referees Submitmanuscript Search Searcharticlesbysubject,keywordorauthor Showresultsfrom Alljournals Thisjournal Search Advancedsearch Quicklinks Explorearticlesbysubject Findajob Guidetoauthors Editorialpolicies Closebanner Close SignupfortheNatureBriefingnewsletter—whatmattersinscience,freetoyourinboxdaily. Emailaddress Signup IagreemyinformationwillbeprocessedinaccordancewiththeNatureandSpringerNatureLimitedPrivacyPolicy. Closebanner Close Getthemostimportantsciencestoriesoftheday,freeinyourinbox. SignupforNatureBriefing
延伸文章資訊
- 1What is Linoleic Acid? - News Medical
Both linoleic and alpha-linolenic acids are polyunsaturated fatty acids, which means that they po...
- 2Linoleic Acid - an overview | ScienceDirect Topics
The approval of linoleic acid as a QD was obtained by Sunstar Inc. in 2001. Linoleic acid is an u...
- 3Linoleic acid | C18H32O2 - PubChem
Linoleic Acid is a polyunsaturated essential fatty acid found mostly in plant oils. It is used in...
- 4Linoleic Acid - an overview | ScienceDirect Topics
Linoleic acid is the shortest chain n-6 fatty acid and the most common PUFA in plant oils and can...
- 5Linoleic acid - Wikipedia