Neural Network: Architecture, Components & Top Algorithms
文章推薦指數: 80 %
A neuron is the basic unit of a neural network. They receive input from an external source or other nodes. Each node is connected with another ...
Programs
DataScience
DataScience|AllCourses
DataScience|ExecutivePG
DataScience|AdvancedCertificate
DataScience|Master
MachineLearning&AI|ExecutivePG
MachineLearning&AI|Masters
MachineLearning&NLP|AdvancedCertificate
MachineLearningandCloud|AdvancedCertification
ExecutivePGPinDataScience–IIITBangalore
M.ScinDataScience–LJMU&IIITBangalore
PCPinDataScience–IIMKozhikode
ACPinDataScience–IIITBangalore
ExecutiveProgrammeinDataScience–IIITB
Management
MBA&Management|AllCourses
MBA(Executive)|NMIMS
MBA(Global)|DBSAustralia
MBA(Global)|LBSUK
DigitalMarketing|AdvancedCertificate
Management|PGProgram
ProductManagement|Certification
Sales&DigitalMarketing|PGProgram
LifeInsurance|PGProgram
BusinessAnalytics|Certification
LifeInsurance(PNB)|PGProgram
Management|PGProgram
MBA(Global)|DeakinBusinessSchool
MBA(DFB)|JGU
GlobalMBA
MasterofBusinessAdministration–IMT&LBS
PGDiplomainManagement
MBAExecutiveinBusinessAnalytics
MBAfromOPJindalGlobalUniversity
MBA(Global)inDigitalMarketing
GlobalMBAfromDeakinBusinessSchool
MBAinStrategy&Leadership
MBAinAdvertising&Branding
StrategicInnovation,DigitalMarketing&BusinessAnalytics
ProductManagementCertification–DukeCE
OperationsManagementandAnalytics–IITDelhi
DesignThinkingCertificationProgram–DukeCE
ExecutivePGPinHRM-LIBA
MastersQualifyingProgram–upGradBschool
PCPinHRMandAnalytics–IIMKozhikode
PGPinManagement–IMTGhaziabad
ManagementProgrammewithPGP–IMT
IntegratedSupplyChainManagement–MSU
EffectiveLeadership&Management–MSU
Software&Technology
SoftwareEngineering|AllCourses
FullStackDevelopment|ExecutivePG
ComputerScience|Masters
FullStackDevelopment|PlacementTrack
FullStackDevelopment|PGCertification
BlockchainTechnology|ExecutivePG
BlockchainTechnology|ExecutiveProgram
BlockchainTechnology|AdvancedCertificate
BigData|ExecutivePG
M.ScinCS–LJMU&IIITBangalore
PGCinSoftwareEngineering–upGrad
FullStackDevelopment–IIITBangalore
ExecutivePGPCyberSecurity–IIITB
ExecutivePGPCloudComputing–IIITB
ExecutivePGPBigData–IIITB
ExecutivePGPDevOps–IIITB
ACPCyberSecurity–IIITBangalore
ACPCloudComputing–IIITBangalore
ACPBigData–IIITBangalore
ACPDevOps–IIITBangalore
NeuralNetwork:Architecture,Components&TopAlgorithms
byupGrad
Weareanonlineeducationplatformprovidingindustry-relevantprogramsforprofessionals,designedanddeliveredincollaborationwithworld-classfacultyandbusinesses.Mergingthelatesttechnology,pedagogyandservices,wedeliver…
May6,2020
Home > ArtificialIntelligence > NeuralNetwork:Architecture,Components&TopAlgorithms
ArtificialNeuralNetworks(ANNs)makeupanintegralpartoftheDeepLearningprocess.Theyareinspiredbytheneurologicalstructureofthehumanbrain.AccordingtoAILabPage,ANNsare“complexcomputercodewrittenwiththenumberofsimple,highlyinterconnectedprocessingelementswhichisinspiredbyhumanbiologicalbrainstructureforsimulatinghumanbrainworking&processingdata(Information)models.”
JoinBestMachineLearningCertificationsonlinefromtheWorld’stopUniversities–Masters,ExecutivePostGraduatePrograms,andAdvancedCertificatePrograminML&AItofast-trackyourcareer.
DeepLearningfocusesonfivecoreNeuralNetworks,including:
Multi-LayerPerceptron
RadialBasisNetwork
RecurrentNeuralNetworks
GenerativeAdversarialNetworks
ConvolutionalNeuralNetworks.
TableofContents
NeuralNetwork:ArchitectureNeuralNetwork:ComponentsNeuralNetwork:AlgorithmsWhatistheLearningProblem?ConclusionWhatisaneuralnetwork?Whatisthedifferencebetweenfeedbackandfeedforwardnetworks?Whatdoyoumeanbythelearningproblem?
NeuralNetwork:Architecture
NeuralNetworksarecomplexstructuresmadeofartificialneuronsthatcantakeinmultipleinputstoproduceasingleoutput.ThisistheprimaryjobofaNeuralNetwork–totransforminputintoameaningfuloutput.Usually,aNeuralNetworkconsistsofaninputandoutputlayerwithoneormultiplehiddenlayerswithin.
InaNeuralNetwork,alltheneuronsinfluenceeachother,andhence,theyareallconnected.Thenetworkcanacknowledgeandobserveeveryaspectofthedatasetathandandhowthedifferentpartsofdatamayormaynotrelatetoeachother.ThisishowNeuralNetworksarecapableoffindingextremelycomplexpatternsinvastvolumesofdata.
Read:MachineLearningvsNeuralNetworks
InaNeuralNetwork,theflowofinformationoccursintwoways–
FeedforwardNetworks:Inthismodel,thesignalsonlytravelinonedirection,towardstheoutputlayer.FeedforwardNetworkshaveaninputlayerandasingleoutputlayerwithzeroormultiplehiddenlayers.Theyarewidelyusedinpatternrecognition.
FeedbackNetworks:Inthismodel,therecurrentorinteractivenetworksusetheirinternalstate(memory)toprocessthesequenceofinputs.Inthem,signalscantravelinbothdirectionsthroughtheloops(hiddenlayer/s)inthenetwork.Theyaretypicallyusedintime-seriesandsequentialtasks.
NeuralNetwork:Components
Source
InputLayers,Neurons,andWeights–
Inthepicturegivenabove,theoutermostyellowlayeristheinputlayer.Aneuronisthebasicunitofaneuralnetwork.Theyreceiveinputfromanexternalsourceorothernodes.Eachnodeisconnectedwithanothernodefromthenextlayer,andeachsuchconnectionhasaparticularweight.Weightsareassignedtoaneuronbasedonitsrelativeimportanceagainstotherinputs.
Whenallthenodevaluesfromtheyellowlayeraremultiplied(alongwiththeirweight)andsummarized,itgeneratesavalueforthefirsthiddenlayer.Basedonthesummarizedvalue,thebluelayerhasapredefined“activation”functionthatdetermineswhetherornotthisnodewillbe“activated”andhow“active”itwillbe.
Let’sunderstandthisusingasimpleeverydaytask–makingtea.Intheteamakingprocess,theingredientsusedtomaketea(water,tealeaves,milk,sugar,andspices)arethe“neurons”sincetheymakeupthestartingpointsoftheprocess.Theamountofeachingredientrepresentsthe“weight.”Onceyouputinthetealeavesinthewaterandaddthesugar,spices,andmilkinthepan,alltheingredientswillmixandtransformintoanotherstate.Thistransformationprocessrepresentsthe“activationfunction.”
Learnabout:DeepLearningvsNeuralNetworks
HiddenLayersandOutputLayer–
Thelayerorlayershiddenbetweentheinputandoutputlayerisknownasthehiddenlayer.Itiscalledthehiddenlayersinceitisalwayshiddenfromtheexternalworld.ThemaincomputationofaNeuralNetworktakesplaceinthehiddenlayers.So,thehiddenlayertakesalltheinputsfromtheinputlayerandperformsthenecessarycalculationtogeneratearesult.Thisresultisthenforwardedtotheoutputlayersothattheusercanviewtheresultofthecomputation.
Inourtea-makingexample,whenwemixalltheingredients,theformulationchangesitsstateandcoloronheating.Theingredientsrepresentthehiddenlayers.Hereheatingrepresentstheactivationprocessthatfinallydeliverstheresult–tea.
NeuralNetwork:Algorithms
InaNeuralNetwork,thelearning(ortraining)processisinitiatedbydividingthedataintothreedifferentsets:
Trainingdataset–ThisdatasetallowstheNeuralNetworktounderstandtheweightsbetweennodes.
Validationdataset–Thisdatasetisusedforfine-tuningtheperformanceoftheNeuralNetwork.
Testdataset–ThisdatasetisusedtodeterminetheaccuracyandmarginoferroroftheNeuralNetwork.
Oncethedataissegmentedintothesethreeparts,NeuralNetworkalgorithmsareappliedtothemfortrainingtheNeuralNetwork.TheprocedureusedforfacilitatingthetrainingprocessinaNeuralNetworkisknownastheoptimization,andthealgorithmusediscalledtheoptimizer.Therearedifferenttypesofoptimizationalgorithms,eachwiththeiruniquecharacteristicsandaspectssuchasmemoryrequirements,numericalprecision,andprocessingspeed.
BeforewediveintothediscussionofthedifferentNeuralNetworkalgorithms,let’sunderstandthelearningproblemfirst.
Alsoread:NeuralNetworkApplicationsinRealWorld
WhatistheLearningProblem?
Werepresentthelearningproblemintermsoftheminimizationofalossindex(f).Here,“f”isthefunctionthatmeasurestheperformanceofaNeuralNetworkonagivendataset.Generally,thelossindexconsistsofanerrortermandaregularizationterm.WhiletheerrortermevaluateshowaNeuralNetworkfitsadataset,theregularizationtermhelpspreventtheoverfittingissuebycontrollingtheeffectivecomplexityoftheNeuralNetwork.
Thelossfunction[f(w]dependsontheadaptativeparameters–weightsandbiases–oftheNeuralNetwork.Theseparameterscanbegroupedintoasinglen-dimensionalweightvector(w).
Here’sapictorialrepresentationofthelossfunction:
Source
Accordingtothisdiagram,theminimumofthelossfunctionoccursatthepoint(w*).Atanypoint,youcancalculatethefirstandsecondderivativesofthelossfunction.Thefirstderivativesaregroupedinthegradientvector,anditscomponentsaredepictedas:
Source
Here,i=1,…..,n.
ThesecondderivativesofthelossfunctionaregroupedintheHessianmatrix,likeso:
Source
Here,i,j=0,1,…
Nowthatweknowwhatthelearningproblemis,wecandiscussthefivemain
NeuralNetworkalgorithms.
1.One-dimensionaloptimization
Sincethelossfunctiondependsonmultipleparameters,one-dimensionaloptimizationmethodsareinstrumentalintrainingNeuralNetwork.Trainingalgorithmsfirstcomputeatrainingdirection(d)andthencalculatethetrainingrate(η)thathelpsminimizethelossinthetrainingdirection[f(η)].
Source
Inthediagram,thepointsη1andη2definetheintervalcontainingtheminimumoff,η*.
Thus,one-dimensionaloptimizationmethodsaimtofindtheminimumofagivenone-dimensionalfunction.Twoofthemostcommonlyusedone-dimensionalalgorithmsaretheGoldenSectionMethodandBrent’sMethod.
GoldenSectionMethod
Thegoldensectionsearchalgorithmisusedtofindtheminimumormaximumofasingle-variablefunction[f(x)].Ifwealreadyknowthatafunctionhasaminimumbetweentwopoints,thenwecanperformaniterativesearchjustlikewewouldinthebisectionsearchfortherootofanequationf(x)=0.Also,ifwecanfindthreepoints(x0
延伸文章資訊
- 1Beginners Guide to Artificial Neural Network - Analytics Vidhya
- 2Artificial neural network - Wikipedia
An artificial neural network consists of a collection of simulated neurons. Each neuron is a node...
- 3(a) Artificial neural network components and (b) multilayer ...
... Artificial neural networks consists of hierarchically arranged processing nodes (artificial n...
- 4The Neural Networks Model - IBM
- 51. Simple neuron model 2. Components of artificial neural ...
Components of artificial neural networks. 3. Common activation functions. 4. MATLAB representatio...