邊緣運算Part 1:邊緣運算技術全解析 - 淺談股海
文章推薦指數: 80 %
以簡單的方式講解邊緣運算,以及比較雲端運算與邊緣運算的差異,同時了解邊緣運算未來的 ... 邊緣運算是一種計算架構,透過分散式的方式將運算位置從過去中心移至邊緣 ... EdgecomputingPublished:2019 Author:D.Y.ViewdetailedstockpriceOperatesontheedgeEdgeComputingPart1 FullanalysisofedgecomputingtechnologyEdgecomputingisacomputingarchitecturethatmovescomputinglocationsfromthecenterofthepasttoedgenodesinadistributedmanner.Edgenodesaredevicesthatareclosertousers.Theedgecomputingapplicationsthatmostexpertsnowrecognizearenotadirectreplacement.Cloudcomputingisdoneincooperationbetweenedgecomputingandcloudcomputing.Theedgeisresponsibleforpreliminarydataprocessinganddetermineswhetheritneedstoresponddirectlyorfurtherhandedovertothecloud.Thecloudisresponsiblefordatastorageandhigherperformanceandlowtimeliness.Computing,suchastheimprovementofmachinelearning.IntheeraoftheInternetofThings,wehavemoredevicesthatneedtorespondinatimelymanner,andalargeramountofinformationneedstobeprocessed.Therefore,edgecomputinghasemergedtoachievelowlatency,reducetransmissioncosts,andreducecloudload.CurrentpracticalapplicationssuchasAmazon Continuetodevelopthechipbusiness,hopingtotransfersomeofthefunctionsofitsownsmartspeakerEchototerminalequipmentinthefuture.CloudcomputingEdgecomputingCloudcomputingvs.edgecomputingThecloudhasgoodstorageandcomputingfunctions,butthetransmissionrateisrelativelyinadequate.Sincedatamustbetransmittedfromtheterminaldevicetotheclouddatacenteraftermultiplelayersoftransmission,itismoretime-consumingthanedgenodecomputing.Second,theInternetofThingsdeviceswillincreasesignificantlyinthefuture.AccordingtoIBM'sstatistics,therewereapproximately15billionInternetofThingsdevicesworldwidein2018,whichisestimatedtodoubleto55billionby2022,andtheamountofdatacollectedwillalsoincreasedramatically.Ifyoustillrelyonlyoncloudcomputing,itwillcostalotofdatatomeetthescaleoftheInternetofThings,andthecloudwillalsobeoverloaded.Edgecomputingthereforehastheadvantagesofreducinglatencyandsharingthehugeamountofdata.However,therearestillsomeproblemsthatneedtobeovercomeinedgecomputing.JustlikeIoTdevices,informationsecuritywillbeabigproblem.Comparedwiththepastcloud,informationsecuritycanbeuniformlyimprovedandmaintainedbythedatacenter,butwhentherearemorecomputingnodesAtthistime,therewillbemoreopportunitiestotakeadvantageoftheemptiness,whichisalsothepartthatlargermanufacturersneedtoactivelyovercome.EdgenodeintroductionThereisnounifiedplacefortheinstallationofedgecomputing.Therearetwomaintypes:1.EdgeServer:UsingBladeSeverorindustrialcomputersasedgecomputingnodedevices,andinstallingthesedevicesclosetotheterminaldevices,thisapproachiscurrentlypraisedbymanycompanies,becausethismethodhasseveraladvantagesincludingIntegratethedataofvariousdevices,cross-analyze,andeasytoexpand.Somepeopleevenproposetoinstallcomputingequipmentonmobiletelecommunicationsbasestationstoensurethepopularityofedgecomputing.Theseedgecomputingdevicesinstalledonmobiletelecommunicationsbasestationscanbeusedforreal-timejudgmentandanalysiswhentheyarenotdrivingontheroad.2.Terminalequipment:SomepeoplehavealsoproposedthatcomplexAIcalculationscanbeperformeddirectlyintheterminalIoTdevice,whichmaybeself-drivingorvariousmachines,butthismethodisnotgoodforexpansionanddataintegration,butitcansaveinstallationcosts.ApplicationfieldInthefuture,edgecomputingwillbeusedinvariousIoTspaces,anditwillalsobeamajortechnologythatpromotesthepopularizationofIoT,especiallyinenvironmentsthatrequiretimelyresponseorhavealargeamountofdatatobeprocessed.Thefollowingisabrieflistofthemainapplicationareas:1.Smartfactory:Itistheearliestapplicationfieldofedgecomputing.Throughedgecomputing,itcanquicklydeterminewhethervarioussemi-finishedproductsmeetthestandardsineachstep,andeffectivelysupervisetheproductionprocess,whilepredictingproductionqualityandspeed. 2.Smartcity:Therewillbealargeamountofdatainthefuturecities,soedgecomputingwillberequiredforpreliminaryandtimelyprocessing,suchastheuseofedgecomputingtoimprovecitysafety,camerareal-timeimagerecognition,andtheimplementationofsmartbuildings. 3.Self-driving:Autonomousdrivinghasbecomeextremelyimportantbecauseoftherequirementsoftimelyresponse,anditisalsothefieldthatmostexpertsthinkthattheyhavetousewhentheymentionedgecomputing.Inaddition,inordertojudgethesurroundingroadconditions,self-drivingcarswillinstallalargenumberofsensorsaroundthecartocollectalargenumberofsurroundingenvironmentaldataimages.Theprocessingofhugedatamakesedgecomputingextremelyimportant,whichshowsthatedgecomputingisveryimportantforself-drivingcars.Thepromotionofwillbecomeindispensable.4.LogisticsCenter:Thedailyvolumeofgoodshandledbythelogisticscenterisincreasing.Inthepastfewyears,automationhasbeencontinuouslypromotedtoreducelaborcosts.Inthefuture,edgecomputingcanbeusedinconveyorbeltmanagement,goodsdistribution,andsortingmachinestospeedupthepickingspeed..Marketsize EdgecomputingisamethodtosolvedatatransmissionandtoovercomethehugedataprocessingneedsoftheInternetofEverythinginthefuture.IBMestimatesthattherewillbe15billionInternetofThingsdevicesin2019,whichwillincreasebymorethanthreeyearsto2022.Tripleto55billion.Themarketsizeofedgecomputingisestimatedtobe1.272billionU.S.dollarsin2018and6.959billionU.S.dollarsin2024.55billionin2022 NumberofIoTdevices15billionin20196.959billion(USD)in2024 EdgeComputingOpportunity20181.272billion(USD)relatedarticlesEdgeComputingPart2:IntegrationofEdgeComputingConceptsEdgecomputingrelatedstocks
延伸文章資訊
- 1邊緣運算三大企業應用關鍵,緊繫雲端、工業物聯網、5G
從雲端運算、工業物聯網(IIoT)、人工智慧、大數據分析到5G網路,邊緣運算(Edge Computing)可[…]
- 2邊緣運算vs 雲端運算分散式或集中式,哪種架構適合你?
我們就來比較一下其優缺點。 雲端運算的優點. 應用系統可以快速上線. 例如疫情期間,很多公司 ...
- 3邊緣計算、霧計算、雲端計算區別幾何? | IT人
現在正在流行的“雲端計算”,是把大量資料放到“雲”裡去計算或儲存,解決諸如電腦或手機儲存量不夠,或者是運算速度不夠快的問題.
- 4何謂邊緣運算?
除了加速工業和製造企業的數字化轉型外,邊緣運算技術還可以實現包括人工智能和機器學習在內的更多創新。 雲端運算和邊緣運算之間的主要區別在於集中式運算環境,在雲端 ...
- 5什麼是邊緣運算(Edge Computing)? - GIGABYTE 技嘉科技
把神經反應想成邊緣運算,大腦判斷作為雲端運算,即可踏出理解「邊緣運算(Edge Computing)」的第一步。 如同集中式大賣場無法取代住家附近的便利商店和 ...