A Comprehensive Guide To Types Of Neural Networks
文章推薦指數: 80 %
What are the Different Types of Neural Networks? · 1. Feedforward Neural Network – Artificial Neuron · 2. Radial Basis Function Neural Network · 3. Multilayer ... AComprehensiveGuidetoTypesofNeuralNetworks Muchofmoderntechnologyisbasedoncomputationalmodelsknownasartificialneuralnetworks.Therearemanydifferenttypesofneuralnetworkswhichfunctiononthesameprinciplesasthenervoussysteminthehumanbody. Whatisaneuralnetwork? AsHowardRheingoldsaid,“Theneuralnetworkisthiskindoftechnologythatisnotanalgorithm,itisanetworkthathasweightsonit,andyoucanadjusttheweightssothatitlearns.Youteachitthroughtrials.”Bythis,youwouldbeclearwithneuralnetworkdefinition. WhatareArtificialNeuralNetworks?TableofContentsWhatareArtificialNeuralNetworks?HowdoNeuralNetworkswork?WhataretheDifferentTypesofNeuralNetworks?1.FeedforwardNeuralNetwork–ArtificialNeuron2.RadialBasisFunctionNeuralNetwork3.MultilayerPerceptron4.ConvolutionalNeuralNetwork5.RecurrentNeuralNetwork(RNN)–LongShortTermMemory6.ModularNeuralNetwork7.Sequence-To-SequenceModelsSummingup Anartificialneuralnetworkisasystemofhardwareorsoftwarethatispatternedaftertheworkingofneuronsinthehumanbrainandnervoussystem.ArtificialneuralnetworksareavarietyofdeeplearningtechnologywhichcomesunderthebroaddomainofArtificialIntelligence. DeeplearningisabranchofMachineLearningwhichusesdifferenttypesofneuralnetworks.ThesealgorithmsareinspiredbythewayourbrainfunctionsandthereforemanyexpertsbelievetheyareourbestshottomovingtowardsrealAI(ArtificialIntelligence). RegisterForaFreeWebinarDate:19thMar,2022(Saturday)Time:11:00AMto12:00PM(IST/GMT+5:30) HiddenWhichProgramareyouinterestedin?*DigitalMarketingDataScienceExcelwithPowerBIIamnotclear.ArrangeasessionwithcareercounsellorName*Email* Phone*Registerme RegistermeforFREEOrientationSession Course* Sendmecoursecurriculumaswell Termandcondition* IagreetoDigitalVidyaPrivacyPolicy&TermsofUse. NameThisfieldisforvalidationpurposesandshouldbeleftunchanged. Δ Deeplearningisbecomingespeciallyexcitingnowaswehavemoreamountsofdataandlargerneuralnetworkstoworkwith. Moreover,theperformanceofneuralnetworksimprovesastheygrowbiggerandworkwithmoreandmoredata,unlikeotherMachineLearningalgorithmswhichcanreachaplateauafterapoint. Neuralnetworks HowdoNeuralNetworkswork? Aneuralnetworkhasalargenumberofprocessors.Theseprocessorsoperateparallellybutarearrangedastiers.Thefirsttierreceivestherawinputsimilartohowtheopticnervereceivestherawinformationinhumanbeings. Eachsuccessivetierthenreceivesinputfromthetierbeforeitandthenpassesonitsoutputtothetierafterit.Thelasttierprocessesthefinaloutput. Smallnodesmakeupeachtier.Thenodesarehighlyinterconnectedwiththenodesinthetierbeforeandafter.Eachnodeintheneuralnetworkhasitsownsphereofknowledge,includingrulesthatitwasprogrammedwithandrulesithaslearntbyitself. Thekeytotheefficacyofneuralnetworksistheyareextremelyadaptiveandlearnveryquickly.Eachnodeweighstheimportanceoftheinputitreceivesfromthenodesbeforeit.Theinputsthatcontributethemosttowardstherightoutputaregiventhehighestweight. WhataretheDifferentTypesofNeuralNetworks? Differenttypesofneuralnetworksusedifferentprinciplesindeterminingtheirownrules.Therearemanytypesofartificialneuralnetworks,eachwiththeiruniquestrengths.Youcantakealookatthis videotoseethedifferenttypesofneuralnetworksandtheirapplicationsindetail. Herearesomeofthemostimportanttypesofneuralnetworksandtheirapplications. 1.FeedforwardNeuralNetwork–ArtificialNeuron Thisisoneofthesimplesttypesofartificialneuralnetworks.Inafeedforwardneuralnetwork,thedatapassesthroughthedifferentinputnodesuntilitreachestheoutputnode. Inotherwords,datamovesinonlyonedirectionfromthefirsttieronwardsuntilitreachestheoutputnode.Thisisalsoknownasafrontpropagatedwavewhichisusuallyachievedbyusingaclassifyingactivationfunction. Unlikeinmorecomplextypesofneuralnetworks,thereisnobackpropagationanddatamovesinonedirectiononly.Afeedforwardneuralnetworkmayhaveasinglelayeroritmayhavehiddenlayers. Inafeedforwardneuralnetwork,thesumoftheproductsoftheinputsandtheirweightsarecalculated.Thisisthenfedtotheoutput.Hereisanexampleofasinglelayerfeedforwardneuralnetwork. Feedforwardneuralnetwork–artificialneuron Feedforwardneuralnetworksareusedintechnologieslikefacerecognitionandcomputervision.Thisisbecausethetargetclassesintheseapplicationsarehardtoclassify. Asimplefeedforwardneuralnetworkisequippedtodealwithdatawhichcontainsalotofnoise.Feedforwardneuralnetworksarealsorelativelysimpletomaintain. RegisterForaFreeWebinarDate:19thMar,2022(Saturday)Time:11:00AMto12:00PM(IST/GMT+5:30) HiddenWhichProgramareyouinterestedin?*DigitalMarketingDataScienceExcelwithPowerBIIamnotclear.ArrangeasessionwithcareercounsellorName*Email* Phone*Registerme RegistermeforFREEOrientationSession Course* Sendmecoursecurriculumaswell Termandcondition* IagreetoDigitalVidyaPrivacyPolicy&TermsofUse. NameThisfieldisforvalidationpurposesandshouldbeleftunchanged. Δ 2.RadialBasisFunctionNeuralNetwork Aradialbasisfunctionconsidersthedistanceofanypointrelativetothecentre.Suchneuralnetworkshavetwolayers.Intheinnerlayer,thefeaturesarecombinedwiththeradialbasisfunction. Thentheoutputofthesefeaturesistakenintoaccountwhencalculatingthesameoutputinthenexttime-step.Hereisadiagramwhichrepresentsaradialbasisfunctionneuralnetwork. Radialbasisfunctionneuralnetwork Theradialbasisfunctionneuralnetworkisappliedextensivelyinpowerrestorationsystems.Inrecentdecades,powersystemshavebecomebiggerandmorecomplex. Thisincreasestheriskofablackout.Thisneuralnetworkisusedinthepowerrestorationsystemsinordertorestorepowerintheshortestpossibletime. 3.MultilayerPerceptron Amultilayerperceptronhasthreeormorelayers.Itisusedtoclassifydatathatcannotbeseparatedlinearly.Itisatypeofartificialneuralnetworkthatisfullyconnected.Thisisbecauseeverysinglenodeinalayerisconnectedtoeachnodeinthefollowinglayer. Amultilayerperceptronusesanonlinearactivationfunction(mainlyhyperbolictangentorlogisticfunction).Here’swhatamultilayerperceptronlookslike. Multilayerperceptron Thistypeofneuralnetworkisappliedextensivelyinspeechrecognitionandmachinetranslationtechnologies. 4.ConvolutionalNeuralNetwork Aconvolutionalneuralnetwork(CNN)usesavariationofthemultilayerperceptrons.ACNNcontainsoneormorethanoneconvolutionallayers.Theselayerscaneitherbecompletelyinterconnectedorpooled. Beforepassingtheresulttothenextlayer,theconvolutionallayerusesaconvolutionaloperationontheinput.Duetothisconvolutionaloperation,thenetworkcanbemuchdeeperbutwithmuchfewerparameters. Duetothisability,convolutionalneuralnetworksshowveryeffectiveresultsinimageandvideorecognition,naturallanguageprocessing,andrecommendersystems. Convolutionalneuralnetworksalsoshowgreatresultsinsemanticparsingandparaphrasedetection.Theyarealsoappliedinsignalprocessingandimageclassification. CNN’sarealsobeingusedinimageanalysisandrecognitioninagriculturewhereweatherfeaturesareextractedfromsatelliteslikeLSATtopredictthegrowthandyieldofapieceofland.Here’sanimageofwhataConvolutionalNeuralNetworklookslike. Convolutionalneuralnetwork 5.RecurrentNeuralNetwork(RNN)–LongShortTermMemory ARecurrentNeuralNetworkisatypeofartificialneuralnetworkinwhichtheoutputofaparticularlayerissavedandfedbacktotheinput.Thishelpspredicttheoutcomeofthelayer. Thefirstlayerisformedinthesamewayasitisinthefeedforwardnetwork.Thatis,withtheproductofthesumoftheweightsandfeatures.However,insubsequentlayers,therecurrentneuralnetworkprocessbegins. Fromeachtime-steptothenext,eachnodewillremembersomeinformationthatithadintheprevioustime-step.Inotherwords,eachnodeactsasamemorycellwhilecomputingandcarryingoutoperations.Theneuralnetworkbeginswiththefrontpropagationasusualbutrememberstheinformationitmayneedtouselater. Ifthepredictioniswrong,thesystemself-learnsandworkstowardsmakingtherightpredictionduringthebackpropagation.Thistypeofneuralnetworkisveryeffectiveintext-to-speechconversiontechnology. Here’swhatarecurrentneuralnetworklookslike. Recurrentneuralnetwork(rnn)–longshorttermmemory 6.ModularNeuralNetwork Amodularneuralnetworkhasanumberofdifferentnetworksthatfunctionindependentlyandperformsub-tasks.Thedifferentnetworksdonotreallyinteractwithorsignaleachotherduringthecomputationprocess.Theyworkindependentlytowardsachievingtheoutput. Asaresult,alargeandcomplexcomputationalprocesscanbedonesignificantlyfasterbybreakingitdownintoindependentcomponents.Thecomputationspeedincreasesbecausethenetworksarenotinteractingwithorevenconnectedtoeachother. Here’savisualrepresentationofaModularNeuralNetwork. Modularneuralnetwork 7.Sequence-To-SequenceModels Asequencetosequencemodelconsistsoftworecurrentneuralnetworks.There’sanencoderthatprocessestheinputandadecoderthatprocessestheoutput.Theencoderanddecodercaneitherusethesameordifferentparameters.Thismodelisparticularlyapplicableinthosecaseswherethelengthoftheinputdataisnotthesameasthelengthoftheoutputdata. Sequence-to-sequencemodelsareappliedmainlyinchatbots,machinetranslation,andquestionansweringsystems. RegisterForaFreeWebinarDate:19thMar,2022(Saturday)Time:11:00AMto12:00PM(IST/GMT+5:30) HiddenWhichProgramareyouinterestedin?*DigitalMarketingDataScienceExcelwithPowerBIIamnotclear.ArrangeasessionwithcareercounsellorName*Email* Phone*Registerme RegistermeforFREEOrientationSession Course* Sendmecoursecurriculumaswell Termandcondition* IagreetoDigitalVidyaPrivacyPolicy&TermsofUse. CommentsThisfieldisforvalidationpurposesandshouldbeleftunchanged. Δ Summingup Therearemanytypesofartificialneuralnetworksthatoperateindifferentwaystoachievedifferentoutcomes.Themostimportantpartaboutneuralnetworksisthattheyaredesignedinawaythatissimilartohowneuronsinthebrainwork. Asaresult,theyaredesignedtolearnmoreandimprovemorewithmoredataandmoreusage.Unliketraditionalmachinelearningalgorithmswhichtendtostagnateafteracertainpoint,neuralnetworkshavetheabilitytotrulygrowwithmoredataandmoreusage. That’swhymanyexpertsbelievethatdifferenttypesofneuralnetworkswillbethefundamentalframeworkonwhichnext-generationArtificialIntelligencewillbebuilt.ThustakingaMachineLearningCoursewillprovetobeanaddedbenefit. Hopefully,bynowyoumusthaveunderstoodtheconceptofNeuralNetworksanditstypes.Moreover,ifyouarealsoinspiredbytheopportunityofMachineLearning,enrolinourMachineLearningusingPythonCourse. AnukratiMehtaAcreativewriter,capableofcuratingengagingcontentinvariousdomainsincludingtechnicalarticles,marketingcopy,websitecontent,andPR. RegisterforFREEDigitalMarketingOrientationClass Date:12thMar,2022(Sat) Time:11AMto12:30PM(IST/GMT+5:30) Name*Email* Phone*Registerme RegistermeforFREEOrientationSession Course* Sendmecoursecurriculumaswell Termandcondition* IagreetoDigitalVidyaPrivacyPolicy&TermsofUse. EmailThisfieldisforvalidationpurposesandshouldbeleftunchanged. Δ Wearegoodpeople.Wedon'tspam. ←Prev:EverythingYouShouldKnowAboutBlockchaininIoT Next:Top20SocialMediaBlogsYouShouldStartFollowingToday→ 1Comment Meera onJanuary3,2020at14:43 Goodarticle.Neverseenapicturewhichsummarizesdifferenttype.Doyouhaveanexampleoffunctionsthatcanbeusedinfeedforwardorexamples9ffeedforward Reply SubmitaCommentCancelreplyYouremailaddresswillnotbepublished.Requiredfieldsaremarked*Comment*Name* Email* Website Savemyname,email,andwebsiteinthisbrowserforthenexttimeIcomment. SubmitComment Δ TakeaDemoClass Ourexpertswillcallyousoonandscheduleone-to-onedemosessionwithyou Course:DigitalMarketingMasterCourse HiddenWhichProgramareyouinterestedin?*DigitalMarketingDataScienceExcelwithPowerBIIamnotclear.ArrangeasessionwithcareercounsellorName*Email* Phone*Registerme RegistermeforFREEOrientationSession Course* Sendmecoursecurriculum Termandcondition* IagreetoDigitalVidyaPrivacyPolicy&TermsofUse. NameThisfieldisforvalidationpurposesandshouldbeleftunchanged. Δ Byclickingtheabovebutton,youagreetoourtermsandconditionsandourprivacypolicy. REQUESTACALLBACK PLEASECHOOSEDESIREDDATEANDTIMEANDONEOFOURTRAININGSPECIALISTWILLCONTACTYOU. Thekeytakeawaysofthissessionare: lWhytodayistheBESTtimetolearnDigitalMarketing? iLearnfromrealCaseStudies LiveExercises:GoogleTrends&GoogleAnalytics CareerOpportunities:Roles,Experience&Salaries wLiveQ&A AnexclusiveSurprise REQUESTACALLBACK PLEASECHOOSEDESIREDDATEANDTIMEANDONEOFOURTRAININGSPECIALISTWILLCONTACTYOU. Name*Email* Phone*HiddenEnquiryAbout*DigitalMarketingCourseDataScienceCourseCorporateTrainingOtherPreferredTimingforacallback9AM-10AM10AM-11AM11AM-12PM12PM-1PM1PM-2PM2PM-3PM3PM-4PM4PM-5PM5PM-6PMHiddenDate MMslashDDslashYYYY HiddenTime Hours : Minutes AM PM HiddenQuery*HiddenTermandcondition* IagreetoDigitalVidyaPrivacyPolicy&TermsofUse. EmailThisfieldisforvalidationpurposesandshouldbeleftunchanged. Δ Byclickingtheabovebutton,youagreetoourPrivacyPolicy. WhyShouldYouAttend? ExperiencehowcanyoutransformyourCareerorBusinessGrowththroughdigitalmarketing Thekeytakeawaysofthissessionare: lWhytodayistheBESTtimetolearnDigitalMarketing? iLearnfromrealCaseStudies LiveExercises:GoogleTrends&GoogleAnalytics CareerOpportunities:Roles,Experience&Salaries wLiveQ&A AnexclusiveSurprise JoinLiveOrientationtoDigitalMarketing onSat|Mar12|11-12:30PM(IST) HiddenWhichProgramareyouinterestedin?*DigitalMarketingDataScienceExcelwithPowerBIIamnotclear.ArrangeasessionwithcareercounsellorName*Email* Phone*Registerme RegistermeforFREEOrientationSession Course* Sendmecoursecurriculumaswell Termandcondition* IagreetoDigitalVidyaPrivacyPolicy&TermsofUse. EmailThisfieldisforvalidationpurposesandshouldbeleftunchanged. Δ Byclickingtheabovebutton,youagreetoourPrivacyPolicy. CertifiedDigitalMarketingMaster(CDMM)TransformyourCareerorBusinessGrowththrough#1DigitalMarketingCourse 4-7Months|Online|StartsApr5,4,12&13,2022 Co-createdwithFacebook,LinkedIn,Shopify 3JobInterviewsGuaranteed UnconditionalMoneyBackGuarantee 61,000+trainedsince2009 DownloadCourseBrochure forDetailedSyllabus,15+Certifications,PlacementSupport,Trainers’Profiles,CourseFees... HiddenWhichProgramareyouinterestedin?*DigitalMarketingDataScienceExcelwithPowerBIIamnotclear.ArrangeasessionwithcareercounsellorName*Email* Phone*Register RegistermeforFREEOrientationSession Termandcondition* IagreetoDigitalVidyaPrivacyPolicy&TermsofUse. EmailThisfieldisforvalidationpurposesandshouldbeleftunchanged. Δ Byclickingtheabovebutton,youagreetoourPrivacyPolicy. JustOneStepAwayfrom BecomingaTopDigitalMarketer GetComplimentaryDigitalMarketingOrientationina1.5hourClass. HiddenWhichProgramareyouinterestedin?*DigitalMarketingDataScienceExcelwithPowerBIIamnotclear.ArrangeasessionwithcareercounsellorName*Email* Phone*Termandcondition* IagreetoDigitalVidyaPrivacyPolicy&TermsofUse. NameThisfieldisforvalidationpurposesandshouldbeleftunchanged. Δ Byclickingtheabovebutton,youagreetoourtermsandconditionsandourprivacypolicy. HowtoGrowyourCareer&Business BecomeaDigitalMarketer GetonaCallwithSeniorCounselorforasuitablecourseandRegisterforaFREEOrientationsessiononDigitalMarketing HiddenWhichProgramareyouinterestedin?*DigitalMarketingDataScienceExcelwithPowerBIIamnotclear.ArrangeasessionwithcareercounsellorName*Email* Phone*Registerme RegistermeforFREEOrientationSession Course* Sendmecoursecurriculum Termandcondition* IagreetoDigitalVidyaPrivacyPolicy&TermsofUse. CommentsThisfieldisforvalidationpurposesandshouldbeleftunchanged. Δ Byclickingtheabovebutton,youagreetoourtermsandconditionsandourprivacypolicy. Preparingfor25000+ProfilesinDataAnalytics? BecomeaDataAnalyst GetonaCallwithSeniorCounselorforasuitablecourseandRegisterforaFREEOrientationsessiononDataAnalytics WhichProgramareyouinterestedin?*DataScienceUsingPythonDataAnalyticsUsingExcelCoursePythonProgrammingCourseMachineLearningCourseMachineLearningwithPythonCourseName*Email* Phone*Registerme RegistermeforFREEOrientationSession Course* Sendmecoursecurriculumaswell Termandcondition* IagreetoDigitalVidyaPrivacyPolicy&TermsofUse. EmailThisfieldisforvalidationpurposesandshouldbeleftunchanged. Δ Byclickingtheabovebutton,youagreetoourtermsandconditionsandourprivacypolicy. BestWaytolearnDataAnalysis DownloadBrochureofDataAnalyticsCoursewithExcel GetCompleteDetailsaboutthecoursecurriculum,RegisterforaFREEOrientationsessiononDataAnalysisCareer. WhichProgramareyouinterestedin?*DataAnalyticsUsingExcelCoursePythonProgrammingCourseMachineLearningCourseMachineLearningwithPythonCourseDataScienceUsingPythonIamUnsure,WanttotakeaSeekCounsellingName*Email* Phone*Registerme RegistermeforFREEOrientationSession Course* Sendmecoursecurriculumaswell Termandcondition* IagreetoDigitalVidyaPrivacyPolicy&TermsofUse. CommentsThisfieldisforvalidationpurposesandshouldbeleftunchanged. Δ Byclickingtheabovebutton,youagreetoourtermsandconditionsandourprivacypolicy. JustOneStepAwayfrom BecomingaTopDataorBusinessAnalyst GetComplimentaryDataAnalyticsOrientationonCareerGrowthina1.5hourClass. WhichProgramareyouinterestedin?*DataScienceUsingPythonDataAnalyticsUsingExcelCoursePythonProgrammingCourseMachineLearningCourseMachineLearningwithPythonCourseName*Email* Phone*Registerme RegistermeforFREEOrientationSession Course* Sendmecoursecurriculumaswell Termandcondition* IagreetoDigitalVidyaPrivacyPolicy&TermsofUse. NameThisfieldisforvalidationpurposesandshouldbeleftunchanged. Δ Byclickingtheabovebutton,youagreetoourtermsandconditionsandourprivacypolicy. UniversityPrograms Name*Email* Phone*HiddenWorkExperience*WorkExperienceIamaFresher1to5YearsMorethan5YearsRegister RegistermeforFREEOrientationSession Termandcondition* IagreetoDigitalVidyaPrivacyPolicy&TermsofUse. EmailThisfieldisforvalidationpurposesandshouldbeleftunchanged. Δ BestWaytolearnDigitalMarketing DownloadBrochureofExecutivePrograminDigitalMarketing GetCompleteDetailsaboutthecoursecurriculum,RegisterforaFREEOrientationsessiononDigitalMarketing Name*Email* Phone*HiddenWorkExperience*WorkExperienceIamaFresher1to5YearsMorethan5YearsRegister RegistermeforFREEOrientationSession Termandcondition* IagreetoDigitalVidyaPrivacyPolicy&TermsofUse. EmailThisfieldisforvalidationpurposesandshouldbeleftunchanged. Δ Byclickingtheabovebutton,youagreetoourtermsandconditionsandourprivacypolicy.
延伸文章資訊
- 1Deep Neural Network: The 3 Popular Types (MLP, CNN and ...
- 2The mostly complete chart of Neural Networks, explained
The zoo of neural network types grows exponentially. One needs a map to navigate between many eme...
- 36 Types of Artificial Neural Networks Currently Being Used in ML
- 45 Different Types of Neural Networks - ProjectPro
Autoencoders: These are a special kind of neural network that consists of three main parts: encod...
- 57 Types of Neural Networks in Artificial Intelligence Explained
There are many types of neural networks like Perceptron, Hopfield, Self-organizing maps, Boltzman...