Essential Fatty Acids | Linus Pauling Institute
文章推薦指數: 80 %
Omega-6 and omega-3 fatty acids are polyunsaturated fatty acids (PUFA), meaning they contain more than one cis double bond (1). In all omega-6 (ω6 or n-6) ... Skiptomaincontent OREGONSTATEUNIVERSITY Opensearchbox LinusPaulingInstitute»MicronutrientInformationCenter Togglemenu Gotosearchpage SearchField ExitSearch AboutStaff ContactUs ArticlesVitaminsBiotin Folate Niacin PantothenicAcid Riboflavin Thiamin VitaminA VitaminB6 VitaminB12 VitaminCSupplementalForms PaulingRecommendation VitaminD VitaminE VitaminK MineralsCalcium Chromium Copper Fluoride Iodine Iron Magnesium Manganese Molybdenum Phosphorus Potassium Selenium Sodium(Chloride) Zinc MicronutrientInadequaciesAnOverview SubpopulationsatRisk TheRemedy OtherNutrientsCholine EssentialFattyAcids Fiber DietaryFactorsL-Carnitine CoenzymeQ10 LipoicAcid PhytochemicalsCarotenoids ChlorophyllandMetallo-ChlorophyllDerivatives Curcumin Fiber Flavonoids Garlic Indole-3-Carbinol Isothiocyanates Lignans Phytosterols Resveratrol SoyIsoflavones ChlorophyllandMetallo-ChlorophyllDerivatives FoodandBeveragesFruitandVegetables CruciferousVegetables Garlic Legumes Nuts WholeGrains GlycemicIndexandGlycemicLoad Coffee Tea AlcoholicBeverages MicronutrientsandHealth LifeStagesChildren Adolescents PregnancyandLactation OlderAdults ResourcesGlossary NutrientIndex DiseaseIndex Drug-NutrientInteractions RelevantLinks HealthcareProfessionalContinuingEducation Books MicronutrientsforHealth RxforHealth Health&Disease Giving Español 日本語 YouarehereOtherNutrients»EssentialFattyAcids EssentialFattyAcids Contents Summary Introduction MetabolismandBioavailability BiologicalActivities Membranestructureandfunction Vision Nervoussystem Synthesisoflipidmediators Regulationofgeneexpression Deficiency Essentialfattyacids Omega-3fattyaciddeficiency Omega-3index DiseasePrevention Pregnancyandearlychildhood developmentaloutcomes Cardiovasculardisease Type2diabetesmellitus Metabolicsyndrome CognitivedeclineandAlzheimer'sdisease DiseaseTreatment Hypertriglyceridemia Nonalcoholicfattyliverdisease Inflammatorydiseases Neuropsychiatricdisorders Alzheimer'sdiseaseanddementia Sources Food Supplements Infantformula Safety Adverseeffects Druginteractions Nutrientinteractions IntakeRecommendations USInstituteofMedicine 2015-2020DietaryGuidelinesforAmericans AHArecommendation Internationalrecommendations LPIRecommendation AuthorsandReviewers References 日本語 Summary Linoleicacid(LA),anomega-6fattyacid,andα-linolenicacid(ALA),anomega-3fattyacid,areconsideredessentialfattyacidsbecausetheycannotbesynthesizedbyhumans.(Moreinformation) Thelong-chainomega-3fattyacids,eicosapentaenoicacid(EPA)anddocosahexaenoicacid(DHA),canbesynthesizedfromALA,butduetolowconversionefficiency,itisrecommendedtoconsumefoodsrichinEPAandDHA.(Moreinformation) Bothomega-6andomega-3fattyacidsareimportantstructuralcomponentsofcellmembranes,serveasprecursorstobioactivelipidmediators,andprovideasourceofenergy.Long-chainomega-3polyunsaturatedfattyacids(PUFAinparticularexertanti-inflammatoryeffects;itisrecommendedtoincreasetheirpresenceinthediet.(Moreinformation) Bothdietaryintakeandendogenousmetabolisminfluencewholebodystatusofessentialfattyacids.Geneticpolymorphismsinfattyacidsynthesizingenzymescanhaveasignificantimpactonfattyacidconcentrationsinthebody.(Moreinformation) DHAsupplementationduringpregnancymayreducetherisksofearlyprematurebirth(birthbefore34weeks'gestation)andverylowbirthweight(<1.5kg[<3pounds5ounces]).(Moreinformation) DHAisimportantforvisualandneurologicaldevelopment.However,supplementationwithlong-chainduringpregnancyorearlyinfancyappearstohavenosignificanteffectonchildren'svisualacuity,neurodevelopment,andphysicalgrowth.(Moreinformation) Replacingsaturatedfatinthedietwithomega-6lowerstotalbloodcholesterol;yet,randomizedcontrolledtrialshavefailedtodemonstratecardiovascularbenefitsinhealthypeopleandpeopleatriskfororwithtype2diabetesmellitus.Long-chainomega-3PUFAsupplementationmaybeusefultoreducemortalityinpatientswithprevalentcoronaryheartdisease(CHD)andinthosewithheartfailurewithoutpreservedventricularfunction.(Moreinformation) IncreasingEPAandDHAintakemaybenefitindividualswithtype2diabetesmellitus,especiallythosewithelevatedserumtriglycerides.However,evidencefromlarge-scalerandomizedtrialsisinsufficienttosupporttheuseofomega-3PUFAsupplementsforcardiovasculardiseasepreventioninthosewithtype2diabetes.(Moreinformation) ObservationalstudieshavefoundfishintaketobeassociatedwithlowerrisksofcognitivedeteriorationandAlzheimer’sdisease,butitisnotyetclearwhethersupplementationwithmarine-derivedomega-3PUFAcanhelppreventcognitivedecline.(Moreinformation) Severalomega-3formulationshavebeenapprovedbytheUSFoodandDrugAdministrationfortheindicationoftreatingseverehypertriglyceridemia.(Moreinformation) Althoughomega-3PUFAdeficiencymaynotbeuncommoninneurodevelopmentalandneuropsychiatricdisorders,thereislittleevidencetosuggestthatsupplementationmaybeabeneficialadjunctinthemanagementofaffectedindividuals.(Moreinformation) TheFoodandNutritionBoardoftheUSInstituteofMedicine(nowtheNationalAcademyofMedicine)establishedadequateintakes(AI)foromega-6andomega-3fattyacids.(Moreinformation) Introduction Omega-6andomega-3fattyacidsarepolyunsaturatedfattyacids(PUFA),meaningtheycontainmorethanonecisdoublebond(1).Inallomega-6(ω6orn-6)fattyacids,thefirstdoublebondislocatedbetweenthesixthandseventhcarbonatomfromthemethylendofthefattyacid.Likewise,allomega-3fattyacids(ω3orn-3)haveatleastonedoublebondbetweenthethirdandfourthcarbonatomcountingfromthemethylendofthefattyacid.Scientificabbreviationsforfattyacidstellthereadersomethingabouttheirchemicalstructure.Forexample,thescientificabbreviationforα-linolenicacid(ALA)is18:3n-3.Thefirstpart(18:3)tellsthereaderthatALAisan18-carbonfattyacidwiththreedoublebonds,whilethesecondpart(n-3)tellsthereaderthatthefirstdoublebondisinthen-3position,whichdefinesthisfattyacidasanomega-3(Figures1a&b).Doublebondsintroducekinksinthehydrocarbonchainthatinfluencethestructureandphysicalpropertiesofthefattyacidmolecule(Figure1c). Althoughhumansandothermammalscansynthesizesaturatedfattyacidsandsomemonounsaturatedfattyacidsfromcarbongroupsincarbohydratesandproteins,theylackthedelta(Δ)12andΔ15desaturaseenzymesnecessarytoinsertacisdoublebondatthen-6orthen-3positionofafattyacid(1).Consequently,omega-6andomega-3fattyacidsareessentialnutrients.Theparentfattyacidoftheomega-6seriesislinoleicacid(LA;18:2n-6),andtheparentfattyacidoftheomega-3seriesisALA(Figure2andTable1).Humanscansynthesizelong-chain(20carbonsormore)omega-6fattyacids,suchasdihomo-γ-linolenicacid(DGLA;20:3n-6)andarachidonicacid(AA;20:4n-6),fromLAandlong-chainomega-3fattyacids,suchaseicosapentaenoicacid(EPA;20:5n-3)anddocosahexaenoicacid(DHA;22:6n-3),fromALA(seeMetabolismandBioavailability). [Figure1aand1b-ClicktoEnlarge][Figure1c-ClicktoEnlarge] [Figure2-ClicktoEnlarge] Table1.NamesandAbbreviationsoftheOmega-6andOmega-3FattyAcids Omega-6FattyAcids Omega-3FattyAcids Linoleicacid LA 18:2n-6 α-Linolenicacid ALA 18:3n-3 γ-Linolenicacid GLA 18:3n-6 Stearidonicacid SDA 18:4n-3 Dihomo-γ-linolenicacid DGLA 20:3n-6 Eicosatetraenoicacid ETA 20:4n-3 Arachidonicacid AA 20:4n-6 Eicosapentaenoicacid EPA 20:5n-3 Adrenicacid 22:4n-6 Docosapentaenoicacid DPA(n-3) 22:5n-3 Tetracosatetraenoicacid 24:4n-6 Tetracosapentaenoicacid 24:5n-3 Tetracosapentaenoicacid 24:5n-6 Tetracosahexaenoicacid 24:6n-3 Docosapentaenoicacid DPA(n-6) 22:5n-6 Docosahexaenoicacid DHA 22:6n-3 MetabolismandBioavailability Priortoabsorptioninthesmallintestine,fattyacidsmustbehydrolyzedfromdietaryfats(triglyceridesandphospholipids)bypancreaticenzymes(2).Bilesaltsmustalsobepresentinthesmallintestinetoallowfortheincorporationoffattyacidsandotherfatdigestionproductsintomixedmicelles.Fatabsorptionfrommixedmicellesoccursthroughoutthesmallintestineandis85%-95%efficientundernormalconditions. Concentrationsoffattyacidsinblood(i.e.,wholeblood,plasma,serum,andredbloodcells)reflectbothdietaryintakeandbiologicalprocesses(3).Humanscansynthesizelongeromega-6andomega-3fattyacidsfromtheessentialfattyacidslinoleicacid(LA)andα-linolenicacid(ALA),respectively,throughaseriesofdesaturation(additionofadoublebondbetweentwocarbonatoms)andelongation(additionoftwocarbonatoms)reactions(Figure3)(4,5).LAandALAcompeteforthesameelongaseanddesaturaseenzymesinthesynthesisoflongerpolyunsaturatedfattyacids(PUFA),suchasarachidonicacid(AA),eicosapentaenoicacid(EPA),anddocosahexaenoicacid(DHA). StudiesofALAmetabolisminhealthyyoungmenindicatedthatapproximately8%ofdietaryALAwasconvertedtoEPAand0%-4%wasconvertedtodocosahexaenoicacid(DHA)(6).Inhealthyyoungwomen,approximately21%ofdietaryALAwasconvertedtoEPAand9%wasconvertedtoDHA(7).Thebettercapacitytogeneratelong-chainPUFAfromALAinyoungwomencomparedtomenisrelatedtotheeffectsofestrogen(8,9).AlthoughonlytheessentialityofALAisrecognizedbecauseitcannotbesynthesizeddenovobyhumans,therelativelylowrateofALAconversionintoEPAandDHAsuggeststhattheselong-chainomega-3PUFAmaybeconsideredconditionallyessentialnutrients. Inadditiontogenderdifferences,geneticvariabilityinenzymesinvolvedinfattyacidmetabolisminfluencesone’sabilitytogeneratelong-chainPUFA.Twokeyenzymesinfattyacidmetabolismaredelta6desaturase(FADS2)anddelta5desaturase(FADS1)(Figure3)(10).Twocommonhaplotypes(aclusterofpolymorphisms)intheFADSgenesdifferdramaticallyintheirabilitytogeneratelong-chainPUFA:haplotypeDisassociatedwithincreasedFADSactivity(bothFADS1andFADS2)andhigherconversionrateoffattyacidprecursors(LAandALA)tolong-chainPUFA(EPA,GLA,DHA,andAA)(11).TheseFADSpolymorphismsarerelativelycommoninthepopulationandmayexplainupto30%ofthevariabilityinbloodconcentrationsofomega-3andomega-6fattyacidsamongindividuals(3). Finally,DHAcanberetro-convertedtoEPAandDPAatalowbasalrateandfollowingsupplementation(Figure3)(12).Aftersupplementingomnivores(n=8)andvegetarians(n=12)forsixweekswithanEPA-freepreparationofDHA(1.62g/day),EPA,DPA,andDHAconcentrationsincreasedinserumandplateletphospholipids(13).Basedonthemeasuredchanges,theestimatedpercentretroconversionofDHAtoEPAwas7.4%-11.4%(basedonserumphospholipiddata)and12.3%-13.8%(basedonplateletphospholipiddata),withnosignificantdifferencebetweenomnivoresandvegetarians.Duetothisnontrivialretroconversionefficiency,DHAsupplementationmayrepresentanalternativetofishoiltoincreasebloodandtissueconcentrationsofEPA,DPA,andDHA(seeSupplements)(5). [Figure3-ClicktoEnlarge] BiologicalActivities Membranestructureandfunction Omega-6andomega-3PUFAareimportantstructuralcomponentsofcellmembranes.Whenincorporatedintophospholipids,theyaffectcellmembraneproperties,suchasfluidity,flexibility,permeability,andtheactivityofmembrane-boundenzymesandcell-signalingpathways(14,15).Inadditiontoendogenousmetabolism,dietaryconsumptionoffattyacidscanmodifythecompositionandmolecularstructureofcellularmembranes.Thus,increasingomega-3fattyacidintakeincreasestheomega-3contentofredbloodcells,immunecells(16),atheroscleroticplaques(17),cardiactissue(18),andothercelltypesthroughoutthebody. DHAisselectivelyincorporatedintoretinalcellmembranesandpostsynapticneuronalcellmembranes,suggestingitplaysimportantrolesinvisionandnervoussystemfunction.Infact,DHArepresentsthepredominantPUFAintheretinaandneuronalcells(19). Vision DHAisfoundatveryhighconcentrationsinthecellmembranesoftheretina;theretinaconservesandrecyclesDHAevenwhenomega-3fattyacidintakeislow(20).AnimalstudiesindicatethatDHAisrequiredforthenormaldevelopmentandfunctionoftheretina.Moreover,thesestudiessuggestthatthereisacriticalperiodduringretinaldevelopmentwheninadequateDHAwillresultinpermanentabnormalitiesinretinalfunction.ResearchindicatesthatDHAplaysanimportantroleintheregenerationofthevisualpigmentrhodopsin,whichplaysacriticalroleinthevisualtransductionsystemthatconvertslighthittingtheretinatovisualimagesinthebrain(21). Nervoussystem Thephospholipidsofthebrain'sgraymattercontainhighproportionsoflong-chainPUFA,suggestingtheyareimportanttocentralnervoussystemfunction(22).AAstimulatesglucoseuptakebycorticalastrocytes,meaningthatitisimportantforenergymetabolism(23).AAandDHAalsoincreasethereleaseofacetylcholine,whichenhancessynapticplasticityandmemory,therebyimprovinglearningabilities(24).AlthoughtrialsofPUFAsupplementationduringpregnancyand/orearlyinfancyfailedtoshowcognitiveimprovementsinoffspring(seeDiseasePrevention),theavailabilityofomega-3andomega-6fattyacidstothefetusandinfantsisessentialforthegrowthoftheirbrainanddevelopmentofbrainfunctions.ThereiscompellingevidencetosuggestthatPUFAareessentialtoneuronalgrowthandsynapseformation,andforappropriateneurotransmission(reviewedin25). Synthesisoflipidmediators Oxylipins OxylipinsarepotentchemicalmessengersderivedfromPUFA.Theyplaycriticalrolesinimmuneandinflammatoryresponses.Themostcommonoxylipinsareeicosanoidsthatencompassnumerousbioactivelipidmediatorsderivedfrom20-carbon("eicosa-")AA.Followingstimulationbyhormones,cytokines,andotherstimuli,PUFAboundtomembranephospholipidsarereleasedfromcellmembranesandbecomesubstratesfordodecanoid,eicosanoid,anddocosanoidproduction.Oxylipinsynthesisreliesprimarilyonthreefamiliesofenzymes:cyclooxygenases(COX),lipoxygenases(LOX),andcytochromep450mono-oxygenases(P450s)(26).FromC18-C22 precursors,COXenzymesproduceprostaglandins,prostacyclins,andthromboxanes(collectivelyknownasprostanoids);LOXproducesleukotrienesandhydroxyfattyacids;andP450sproducehydroxyeicosatetraenoicacids("HETEs")andepoxides(Figure4). PhysiologicalresponsestoAA-derivedeicosanoidsdifferfromresponsestoEPA-derivedeicosanoids.Ingeneral,EPAisapoorsubstrateforeicosanoidproductionandEPA-deriveseicosanoidsarelesspotentinducersofinflammation,bloodvesselconstriction,andcoagulationthaneicosanoidsderivedfromAA(19,27). Nonetheless,itisanoversimplificationtolabelallAA-derivedeicosanoidsaspro-inflammatory.AA-derivedprostaglandinsinduceinflammationbutalsoinhibitpro-inflammatoryleukotrienesandcytokinesandinduceanti-inflammatorylipoxins,therebymodulatingtheintensityanddurationoftheinflammatoryresponsevianegativefeedback(Figure4)(17). [Figure4-ClicktoEnlarge] Pro-resolvingmediators AseparateclassofPUFA-derivedbioactivelipids,specializedpro-resolvingmediators(SPMs),hasbeenmorerecentlyidentified(reviewedin28).Thesemoleculesfunctionaslocalmediatorsoftheresolutionphaseofinflammation,activelyturningofftheinflammatoryresponse.SPMsarederivedfrombothomega-6andomega-3PUFA(Figure4)(29).TheS-seriesofSPMsresultsfromtheLOX-mediatedoxygenationofEPAandDHA,givingrisetoS-resolvins,S-protectins,andS-maresins.AsecondclassofSPMs,theR-series,isgeneratedfromtheaspirin-dependentacetylationofCOX-2andsubsequentgenerationofaspirin-triggeredSPMsfromAA,EPA,andDHA.Itappearsthatthesemediatorsmayexplainmanyoftheanti-inflammatoryactionsofomega-3fattyacidsthathavebeendescribed(16,30). Isoprostanes Isoprostanesareprostaglandin-likecompoundsthatareformedbynon-enzymatic,freeradical-inducedoxidationofanyPUFAwiththreeormoredoublebonds(Figure4)(26).Becausetheyareproduceduponexposuretofreeradicals,isoprostanesareoftenusedasmarkersforoxidativestress.Incontrasttoprostanoids,isoprostanesaresynthesizedfromesterifiedPUFAprecursorsandremainboundtothemembranephospholipiduntilcleavedbyPLA2andreleasedintocirculation.Inadditiontobeingusedasmarkersofoxidativestress,isoprostanesmayalsofunctionasinflammatorymediators,exertingbothpro-andanti-inflammatoryeffects(26). Regulationofgeneexpression PUFAarepleiotropicregulatorsofcellfunction.Theycanregulategeneexpressiondirectlybyinteractingwithtranscriptionfactorsorindirectlybyinfluencingmembranelipidcompositionandcellsignalingpathways. Theresultsofcellcultureandanimalstudiesindicatethatomega-6andomega-3fattyacidscanmodulatetheexpressionofanumberofgenes,includingthoseinvolvedwithfattyacidmetabolismandinflammation(31,32).Omega-6andomega-3fattyacidsregulategeneexpressionbyinteractingwithspecifictranscriptionfactors,suchasperoxisomeproliferator-activatedreceptors(PPARs)(33).Inmanycases,PUFAactlikehydrophobichormones(e.g.,steroidhormones)tocontrolgeneexpressionandbinddirectlytoreceptorslikePPARs.Theseligand-activatedreceptorsthenbindtothepromotersofgenesandfunctiontoincrease/decreasetranscription. Inothercases,PUFAregulatetheabundanceoftranscriptionfactorsinsidethecell'snucleus(14).TwoexamplesincludeNFκBandSREBP-1.NFκBisatranscriptionfactorinvolvedinregulatingtheexpressionofmultiplegenesinvolvedininflammation.Omega-3PUFAsuppressNFκBnuclearcontent,thusinhibitingtheproductionofinflammatoryeicosanoidsandcytokines.SREBP-1isamajortranscriptionfactorcontrollingfattyacidsynthesis,bothdenovolipogenesisandPUFAsynthesis.DietaryPUFAcansuppressSREBP-1,whichdecreasestheexpressionofenzymesinvolvedinfattyacidsynthesisandPUFAsynthesis.Inthisway,dietaryPUFAfunctionasfeedbackinhibitorsofallfattyacidsynthesis. Byalteringcellmembranefluidity,fattyacidscaninterferewiththeactivityofmembranereceptorsystemsandthusindirectlyinfluencesignalingpathwaysandgeneexpression(34). Deficiency Essentialfattyaciddeficiency Clinicalsignsofessentialfattyaciddeficiencyincludeadryscalyrash,decreasedgrowthininfantsandchildren,increasedsusceptibilitytoinfection,andpoorwoundhealing(35).Omega-3,omega-6,andomega-9fattyacidscompeteforthesamedesaturaseenzymes.Thedesaturaseenzymesshowpreferenceforthedifferentseriesoffattyacidsinthefollowingorder:omega-3>omega-6>omega-9.Consequently,synthesisoftheomega-9fattyacideicosatrienoicacid(20:3n-9,meadacid,or5,8,11-eicosatrienoicacid)increasesonlywhendietaryintakesofomega-3andomega-6fattyacidsareverylow;therefore,meadacidisonemarkerofessentialfattyaciddeficiency(36).Aplasmaeicosatrienoicacid:arachidonicacid(triene:tetraene)ratiogreaterthan0.2isgenerallyconsideredindicativeofessentialfattyaciddeficiency(35,37).Inpatientswhoweregiventotalparenteralnutritioncontainingfat-free,glucose-aminoacidmixtures,biochemicalsignsofessentialfattyaciddeficiencydevelopedinaslittleas7to10days(38).Inthesecases,thecontinuousglucoseinfusionresultedinhighcirculatinginsulinconcentrations,whichinhibitedthereleaseofessentialfattyacidsstoredinadiposetissue.Whenglucose-freeaminoacidsolutionswereused,parenteralnutritionupto14daysdidnotresultinbiochemicalsignsofessentialfattyaciddeficiency.Essentialfattyaciddeficiencyhasalsobeenfoundtooccurinpatientswithchronicfatmalabsorption(39)andinpatientswithcysticfibrosis(40).Ithasbeenproposedthatessentialfattyaciddeficiencymayplayaroleinthepathologyofprotein-energymalnutrition(36). Omega-3fattyaciddeficiency Atleastonecaseofisolatedomega-3fattyaciddeficiencyhasbeenreported.AyounggirlwhoreceivedintravenouslipidemulsionswithverylittleALAdevelopedvisualproblemsandsensoryneuropathy;theseconditionswereresolvedwhenshewasadministeredanemulsioncontainingmoreALA(41).Isolatedomega-3fattyaciddeficiencydoesnotresultinincreasedplasmatriene:tetraeneratios,andskinatrophyanddermatitisareabsent(1).PlasmaDHAconcentrationsdecreasewhenomega-3fattyacidintakeisinsufficient,butnoacceptedplasmaomega-3fattyacidoreicosanoidconcentrationsindicativeofimpairedhealthstatushavebeendefined(1).Studiesinrodentshaverevealedsignificantimpairmentofn-3PUFAdeficiencyonlearningandmemory(42,43),promptingresearchinhumanstoassesstheimpactofomega-3PUFAoncognitivedevelopmentandcognitivedecline(seeCognitiveandvisualdevelopmentandAlzheimer'sdisease). Omega-3index Theomega-3indexisdefinedastheamountofEPAplusDHAinredbloodcellmembranesexpressedasthepercentoftotalredbloodcellmembranefattyacids(44).TheEPA+DHAcontentofredbloodcellmembranescorrelateswiththatofcardiacmusclecells(45,46),andseveralobservationalstudiesindicatethataloweromega-3indexisassociatedwithanincreasedriskofcoronaryheartdiseasemortality(47).Itisthereforeproposedthattheomega-3indexbeusedasabiomarkerforcardiovasculardiseaserisk,withsuggestedcutoffsasfollows:highrisk,<4%;intermediaterisk,4%-8%;andlowrisk,>8%(48). SupplementationwithEPA+DHAfromfishoilcapsulesforapproximatelyfivemonthsdose-dependentlyincreasedtheomega-3indexin115healthy,youngadults(ages,20-45years),validatingtheuseoftheomega-3indexasabiomarkerofEPA+DHAintake(49).Beforetheomega-3indexcanbeusedinroutineclinicalevaluation,however,clinicalreferencevaluesinthepopulationmustbeestablished(50).Additionally,fattyacidmetabolismmaybealteredincertaindiseasestates,potentiallymakingtheomega-3indexlessrelevantforsomecardiovascularconditions(5). DiseasePrevention Pregnancyandearlychildhooddevelopmentaloutcomes Supplementationduringpregnancy Effectonpregnancy-associatedconditionsandneonataloutcomes:Theresultsofrandomizedcontrolledtrialsduringpregnancysuggestthatomega-3polyunsaturatedfattyacid(PUFA)supplementationdoesnotdecreasetheincidenceofgestationaldiabetesandpreeclampsia(51-54)butmayresultinmodestincreasesinlengthofgestation,especiallyinwomenwithlowomega-3fattyacidconsumption.A2006meta-analysisofsixrandomizedcontrolledtrialsinwomenwithlow-riskpregnanciesfoundthatomega-3PUFAsupplementationduringpregnancyresultedinanincreasedlengthofpregnancyby1.6days(55).A2007meta-analysisofrandomizedcontrolledtrialsinwomenwithhigh-riskpregnanciesfoundthatsupplementationwithlong-chainPUFAdidnotaffectpregnancydurationortheoverallincidenceofprematurebirths(birthbefore37weeks'gestation)butdecreasedtheincidenceofearlyprematurebirths(birthbefore34weeks'gestation;2trials,291participants)(56).Analysesofthesecondaryoutcomesofthe2010DHAtoOptimizeMother-InfantOutcome(DOMInO)trialin2,399participantsshowedthatsupplementationwithDHA-enrichedfishoilcapsules(800mg/dayofDHAand100mg/dayofEPA)duringpregnancy(from<21gestationalweeksuntilbirth)reducedtheriskofearlyprematurebirthbutincreasedtheriskofobstetricalinterventionsliketheneedforinductionorcesareansection,whencomparedtosupplementationwithDHA-freevegetableoilcapsules(57).A2016meta-analysisoftrialsfoundevidencetosuggestthatomega-3PUFAsupplementationduringpregnancyreducedtheoverallriskofprematurityandtheriskofearlyprematurebirths,increasedgestationalageatdeliveryandbirthweight,andhadnoeffectontherisksofperinataldeathandlowApgarscoresat1minutepostbirth(58).Adose-responseanalysisfoundacontinuousreductionoftherisksofearlyprematurebirth(birthbefore34weeks'gestation)andverylowbirthweight(birthweight<1,500g)withdailydosesofDHAsupplementuptoatleast600mgduringpregnancy(59).Thereiscurrentlylimitedevidencetosupportaroleforomega-3supplementationinthepreventionofrecurrentintrauterinegrowthrestriction(IUGR)(60)orrecurrentpretermbirth(61). Effectonchildren'scognitiveandvisualdevelopment:Theeffectofmaternalomega-3long-chainPUFAsupplementationonearlychildhoodcognitiveandvisualdevelopmentwassummarizedina2013systematicreviewandmeta-analysis(62).Includedinthisassessmentwere11randomizedcontrolledtrials(atotalof5,272participants)thatsupplementedmaternaldietwithomega-3long-chainPUFAduringpregnancyorbothpregnancyandlactation.Resultsregardingvisualoutcomes(eighttrials)couldnotbepooledtogetherduetovariabilityinassessments;overall,fourofsixtrialshadnullfindingsandtheremainingtwotrialshadveryhighratesofattrition.Cognitiveoutcomes(ninetrials)includedtheDevelopmentalStandardScore(DSS;ininfants,toddlers,andpreschoolers)orIntelligenceQuotient(IQ;inchildren)andotheraspectsofneurodevelopment,suchaslanguage,behavior,andmotorfunction.NodifferenceswerefoundbetweenDHAandcontrolgroupsforcognitionmeasuredwithstandardizedpsychometricscalesininfants(<12months),toddlers(12-24months),andschool-agedchildren(5-12years);preschoolchildren(2-5years)intheDHAtreatmentgrouphadasubstantiallyhigherDSSscorecomparedtocontrols.Theauthorsnotedthatmanyofthetrialsoflong-chainPUFAsupplementationinpregnancyhadmethodologicalweaknesses(e.g.,highratesofattrition,smallsamplesizes,highriskofbias,multiplecomparisons),limitingtheconfidenceandinterpretationofthepooledresults.Ofnote,aseven-yearfollow-upoftheDOMInOtrialiscurrentlyunderwaytoassesstheeffectofDHAsupplementationduringpregnancyonchildIQandvariousmeasuresofcognitivedevelopment(e.g.,executivefunctioning,memory,language)(63). Effectonchildren’sbodycomposition:Thefollow-upof1,531childrenwhosemotherswererandomizedtosupplementalDHA(800mg/day)oracontrolduringthesecondhalfofpregnancyintheDOMInOtrialshowednoeffectofmaternalDHAsupplementationonthebodymassindex(BMI)-for-agezscoreandpercentageofbodyfatoftheirchildrenatthreeandfiveyearsofage(64).Measuresofinsulinresistancein5-year-oldchildrenwereunexpectedlyhigherinchildrenwhosemotherswereintheDHAgroupthaninthosewhosemotherswereinthecontrolgroup(64).Furtheranalysesconductedinasubsetofchildren(252)atagesevenyearsagainshowednoeffectofDHAsupplementationonBMIzscore,percentageofbodyfat,height,weight,andwaist/hipcircumference(65).Currentevidencefrom10randomizedcontrolledtrialsprimarilyconductedinhigh-incomecountries(allbutone)suggestsnoinfluenceofmaternalsupplementationwithlong-chainPUFAonthebodycompositionandanthropometryoftheoffspring(66). Effectonchildren'sriskofallergiesandasthma:A2018meta-analysisofrandomizedcontrolledtrialsin2,047childrenfollowedforsixmonthsto16yearsfounda19%lowerriskofwheezingand/orasthmawithmaternalsupplementationofomega-3PUFA(primarilyEPAandDHA)fromasearlyasthe20thweekofgestationuntildelivery(67).However,therewasnoeffectofprenatalsupplementationwhentheanalysiswasrestrictedtothethreetrialsthatreportedontheincidenceofchildhoodasthmaonly(67).Anothermeta-analysisofninetrialsin3,637children,includingthreetrialsinwhichmaternalsupplementationwithomega-3PUFAcontinuedafterbirth,foundnoeffectofprenatalsupplementsontheriskofanyallergy(threetrials),theriskofwheezeand/orasthma(seventrials),theriskofeczema(sixtrials),thedevelopmentofallergicrhinitis(twotrials),andtheriskoffoodallergy(threetrials)inchildren(68).Therewas,however,someevidencetosuggestthatprenatalsupplementationcouldlowertheincidenceofsensitizationtospecificallergens,namelyegg(threetrials;-46%)andpeanut(twotrials;-38%)(68). Supplementationtobreast-feedingmothers A2015systematicreviewandmeta-analysissummarizedtheresultsofeightrandomizedcontrolledtrialsthatexaminedtheeffectofmaternalsupplementationwithlong-chainPUFAduringeitherpregnancyandlactationorlactationonlyonthedevelopmentandgrowthoftheirinfantsoverthefirsttwoyearsoflifeandbeyond(69).Allstudieswereconductedinhigh-incomecountries.Nodifferencesbetweenlong-chainPUFAsupplementationandcontrolwereobservedintermsoflanguagedevelopment,intelligenceorproblem-solvingability,psychomotordevelopment,andanthropometricmeasurements(weight,length/height,headcircumference,BMI,fatmassdistribution)(69). Supplementationininfants ThelasttrimesterofpregnancyandfirstsixmonthsofpostnatallifearecriticalperiodsfortheaccumulationofDHAinthebrainandretina(70).Humanmilkcontainsamixtureofsaturatedfattyacids(~46%),monounsaturatedfattyacids(~41%),omega-6PUFA(~12%),andomega-3PUFA(~1.3%)(71).AlthoughhumanmilkcontainsDHAinadditiontoALAandEPA,ALAwastheonlyomega-3fattyacidpresentinconventionalinfantformulasuntiltheyear2001.AlthoughinfantscansynthesizeDHAfromALA,theygenerallycannotsynthesizeenoughtopreventdeclinesinplasmaandcellularDHAconcentrationswithoutadditionaldietaryintake.Therefore,itwasproposedthatinfantformulasbesupplementedwithenoughDHAtobringplasmaandcellularDHAconcentrationsofformula-fedinfantsuptothoseofbreast-fedinfants(72). Allinfants:AlthoughformulasenrichedwithDHAraiseplasmaandredbloodcellDHAconcentrationsinpretermandterminfants,theresultsofrandomizedcontrolledtrialsexaminingmeasuresofvisualacuityandneurologicaldevelopmentininfantsfedformulawithorwithoutaddedDHAhavebeenmixed.Forinstance,a2012meta-analysisofrandomizedcontrolledtrials(12trials,1,902infants)comparinglong-chainPUFA-supplementedandunsupplementedformula,startedwithinonemonthofbirth,foundnoeffectoflong-chainPUFAsupplementationoninfantcognitionassessedatapproximatelyoneyearofage(73).Alackofeffectwasobservedregardlessofthedoseoflong-chainPUFAortheprematuritystatusoftheinfant.Withrespecttovisualacuity,a2013meta-analysisofrandomizedcontrolledtrials(19trials,1,949infants)foundabeneficialeffectoflong-chainPUFA-supplementedformula,startedwithinonemonthofbirth,oninfantvisualacuityupto12monthsofage(74).Notably,twodifferenttypesofvisualacuityassessmentwereevaluatedinthemeta-analysis.VisualacuityassessedbyusingtheVisuallyEvokedPotential(10trials,852infants)showedasignificantpositiveeffectoflong-chainPUFA-supplementedformulaat2,4,and12monthsofage.WhenassessedbytheBehavioralMethod(12trials,1,095infants),asignificantbenefitoflong-chainPUFA-supplementedformulaonvisualacuitywasfoundonlyattheageoftwomonths.Nomoderatingeffectsofdoseorprematuritystatuswereobserved. Preterminfants:Afewtrialshavebeenspecificallyconductedinpreterminfants.ThisisthecaseoftheDHAfortheImprovementofNeurodevelopmentalOutcome(DINO)trialthatinitiallyenrolled657verypreterminfants(born<33gestationalweeks)infiveAustralianhospitals(75).TheaimofthetrialwastoexaminetheeffectofenteralfeedswitheitherhighDHA(1%oftotalfattyacids)orstandardDHAlevel(0.3%oftotalfattyacids)topreterminfantsfromage2to4daysoflifeuntilterm'scorrectedage(meanduration,9.4weeks)ontheirmentalandpsychomotordevelopment,assessedat18months'and7years'correctedages.Atthe18-monthfollow-up,therewasnodifferenceinmeanMentalDevelopmentIndex(MDI)andPsychomotorDevelopmentIndex(PDI)testscoresbetweenhigh-DHAandstandard-DHAgroups;yet,betterMDIscoresingirlsfedhigh-DHAversusthosefedstandard-DHAfeedswerereportedinsubgroupanalyses(75).Post-hocanalysesalsosuggestedfewercaseswithdelayedmentaldevelopmentamonggirlsandinfantsweighing<1,250kgatbirthinthehigh-versusstandard-DHAgroup(75).Follow-upat7years’correctedageshowednodifferencebetweengroupsinmeasuresofIQandcognitivedevelopment,includingattention,short-termverbalmemoryandlearningability,executivefunctioning,visualperception,andacademicachievement(76).A2016systematicreviewof17trialsfoundlittleevidencetosuggestthatsupplementingpreterminfantswithlong-chainPUFA(primarilyAAandDHA)improvedmeasuresofvisualacuity,neurodevelopment,andphysicalgrowthduringinfancy(77). Cardiovasculardisease Omega-6fattyacids Linoleicacid(LA)isthemostabundantdietaryPUFAandaccountsforapproximately90%ofdietaryomega-6PUFAintake(78). Observationalstudies:Apooledanalysisof13prospectivecohortstudies,encompassing310,602individualsand12,479coronaryheartdisease(CHD)events(ofwhichresultedin5,882CHDdeaths)overfollow-upperiodsof5.3to30years,foundhigherLAintakestobeassociatedwitha15%lowerriskofCHDeventsanda21%lowerriskofCHDmortality(79).Adose-responseanalysisfoundthatreplacing5%ofenergyfromsaturatedfattyacidswithLAwasassociatedwitha9%lowerriskofcoronaryeventsanda13%lowerriskofcoronarydeaths(79).A2019meta-analysisof30prospectivecohortstudiesin68,659participantsfoundthatindividualsinthehighestversuslowestquintileofLAconcentrationsintissues(primarilybloodcompartments)hada23%lowerriskofcardiovascularmortality(80).NoassociationswerefoundbetweenLAconcentrationsintissuesandtherisksofCHD,ischemicstroke,ortotalcardiovasculardisease(80). Randomizedcontrolledtrials:Takingintoconsiderationtheresultsfromfourrandomizedcontrolledtrials(81-85)thatcomparedtheeffectsofdietseitherhighinsaturatedfattyacidsorPUFAoveratleasttwoyears,a2016systematicreviewandpresidentialadvisoryfromtheAmericanHeartAssociationconcludedthatloweringsaturatedfatintakeandreplacingitwithvegetableoilrichinPUFA(primarilysoybeanoil)couldreducetheriskofCHDby29%(86).Ofnote,thesetrialswereconductedinthe1960sand1970s,whentheuseofcholesterol-loweringdrugstatinwasnotwidespreadandthesaturatedfatcontentindietswashigher;allbutonetrial(84,85)wereinmenwithdiagnosedcardiovasculardisease(CVD).Amongthesefourtrials,theOsloDiet-HeartStudy(83)increasedbothomega-3andomega-6PUFAintake,andtheFinnishMentalHospitalStudy(84,85)usedacross-overdesign — bothtrialswereexcludedfromaCochranesystematicreviewof19randomizedcontrolledtrialsthatexaminedtheeffectofincreasingomega-6PUFAintakeonCVDoutcomes(87).Ofthese19trials,sevenassessedtheeffectofsupplementalγ-linolenicacid(GLA)and12assessedtheeffectofsubstitutingdietaryLAforsaturatedormonounsaturatedfattyacids.Thepooledanalysisofstudiesshowednoeffectofincreasingomega-6intakeontherisksofCHDorCVDevents,majoradversecardiacandcerebrovascularevents,myocardialinfarction(MI),stroke,CVDmortality,orall-causemortality(low-qualityevidence)(87).Moreover,manytrialsthatexaminedtheeffectofreplacingsaturatedfattyacidswithmostlyomega-6PUFAmaynothavebeenadequatelycontrolled.Forexample,insometrials,onlytheexperimentalgroup(thehighomega-6PUFAgroup)receiveddietaryadviceregardingmorethanjustreplacingsaturatedfattyacidsbyomega-3PUFA,e.g.,toavoiddietarysourcesoftransfattyacidsandprocessedfoods,toconsumemorewhole-plantfoods,tolowersugarconsumption,toincreaseconsumptionoffishandshellfish,whichcouldhavebiasedtheresults(88).Additionally,arecentmeta-analysisoftrialswithlowriskofbias(i.e.,freeofdifferencesbetweeninterventionandcontrolgroupsotherthanthoseunderexamination)showednoevidenceofaneffectofsubstitutingomega-6PUFAforsaturatedfattyacidsontherisksofmajorCHDevents(MIandsuddendeath),totalCHDevents,CHDmortality,andall-causemortality(88). Yet,replacingdietarysaturatedfattyacidswithomega-6PUFAwasconsistentlyfoundtolowertotalbloodcholesterolconcentrations(87,89).Infact,LAhasbeenshowntobethemostpotentfattyacidforloweringtotalcholesterolwhensubstitutedfordietarysaturatedfattyacids(90).ThepotentialmechanismsbywhichLAreducesbloodcholesterolinclude(1)theupregulationofLDLreceptorandredistributionofLDL-cholesterolfromplasmatotissue,(2)theincreaseinbileacidproductionandcholesterolcatabolism,and(3)thedecreasedVLDL-to-LDLconversion(91).However,ifsubstitutingomega-6PUFAforsaturatedfattyacidscanreducebloodcholesterol,themostrecentsystematicreviewsandmeta-analyseshavefailedtofindevidenceofclinicalcardiovascularbenefits(seeabove)(87,88,92). Omega-3fattyacids Observationalstudies:Ameta-analysisof17prospectiveandtworetrospectivecohortstudiesin45,637generallyhealthyparticipantsfoundthatcirculatingconcentrationsofα-linolenicacid(ALA)andlongerchainomega-3PUFA(i.e.,eicosapentaenoicacid[EPA],docosapentaenoicacid[DPA],docosahexaenoicacid[DHA])wereinverselyassociatedwiththeriskoffatalcoronaryheartdisease(CHD)(93). SeveralobservationalstudiesalsoexaminedtherelationshipbetweendietaryALAintakeandtheriskofCHD.A2018meta-analysisof14prospectivecohortstudiesinatotalof345,202participantsfreeofcardiovasculardisease(CVD)evaluatedtheriskofcompositeCHDoutcomes(combiningdifferentCHDevents)andfatalCHDinrelationtodietaryconsumptionofALA(94).Overall,thepooledanalysisfounda9%lowerriskofcompositeCHDoutcomesanda15%lowerriskoffatalCHDwithhigherALAexposure(94).Further,anumberofprospectivecohortstudieshaveexaminedtheconsumptionoffish,richinlong-chainomega-3PUFA(mainlyEPAandDHA),inrelationtovariouscardiovasculareventsandmortality.A2018reviewoftheevidenceandadvisoryfromtheAmericanHeartAssociationconcludedthatseafoodintakewasassociatedwithmodestlylowerrisksofCHD,ischemicstroke,andsuddencardiacdeath,andnotedagreaterbenefitwhenintakewentfromzerotooneortwoseafoodmealsperweekandwhenseafoodwassubstitutedforlesshealthyoptionslikeprocessedmeat(95).Incontrast,recentlypublishedmeta-analysesofprospectivecohortstudiesfoundlittleevidenceofinverseassociationsbetweenfishconsumptionandeitherCHDorstroke(96,97).Higherfishconsumptionwasfoundtobeassociatedwithlowerrisksofmyocardialinfarction(MI)(98)andcongestiveheartfailure(96).Inaddition,onemeta-analysisof12prospectivecohortstudiesfounda6%lowerriskofall-causemortalitywiththehighestversuslowestleveloffishconsumption(99).Yet,anothermeta-analysisfoundnoassociationbetweenfishintakeandall-causemortalitybuta4%lowerriskofCVDmortalityforeach20-g/dayincrementinfishintake(100). Thepotentialcardiovascularbenefitofseafoodconsumptionappearstobetightlylinkedtothetypeofseafood(e.g.,fattyorleanfish),thewayitisprepared(e.g.,baked,broiled,orfried),thepresenceoftoxicmetalsandenvironmentalcontaminants,andthehabituallevelofconsumption(highversuslow) — thesefactorsmaybeconfoundingtheresultsreportedinobservationalstudiesandpooledanalyses(95).Althoughseafoodisagoodsourceoflong-chainomega-3PUFA,healthbenefitsassociatedwithfishconsumptioncouldbeattributedtothepresenceofothernutritionalfactors(e.g.,micronutrientsandhigh-qualityprotein)andthatseafoodconsumptionisusuallyamarkerofhighersocioeconomicstatus,aswellashealthylifestyles(101,102). Randomizedcontrolledtrials:A2018CochranesystematicreviewassessedtheevidenceforacardioprotectiveeffectofALAandlong-chainomega-3PUFAinindividualseitheratloworhighriskofCVD(103).Moderate-to-highqualityevidencefromrandomizedcontrolledtrials(ofatleast12months)suggestednoeffectofomega-3PUFA(eithersupplemented,enrichedinmeals,oradvisedtobeconsumed)ontheriskofCHDevents,CVDevents,arrhythmia,stroke,CHDmortality,CVDmortality,orall-causemortality.Therewasalsonoevidenceofaneffectonsecondaryoutcomes,includingmajoradversecerebrovascularorcardiovascularevents,MI,suddencardiacdeath,anginapectoris,heartfailure,revascularization,peripheralarterialdisease,andacutecoronarysyndrome(103).A2017reviewandadvisoryfromtheAmericanHeartAssociationfoundnoevidencetosuggestabenefitoflong-chainomega-3PUFAsupplementationforthepreventionofcardiovascularmortalityinpatientswithoratriskoftype2diabetesmellitus,thepreventionofCHDinpatientswithatheroscleroticdisease(e.g.,withpriorstroke,peripheralvasculardisease,diabetes,hypercholesterolemia),thepreventionofstrokeinpatientswithorwithoutahistoryofstroke,andthepreventionofatrialfibrillationinpatientswithprioratrialfibrillationorinthoseundergoingcardiacsurgery(104).Therewassomeevidencetosuggestthatsupplementationwithlong-chainomega-3PUFAinpatientswithpriorclinicalCHDmightreducetheriskofCHDdeath,possiblybecauseofareductionintheriskofischemia-inducedsuddencardiacdeath(104). Hypertriglyceridemia(borderlinehigh:serumtriglycerides150-199mg/dL;high:serumtriglycerides>200mg/dL)isanindependentriskfactorforcardiovasculardisease(105).NumerouscontrolledclinicaltrialshavedemonstratedthatincreasingintakesofEPAandDHAsignificantlylowerserumtriglycerideconcentrations(103).Thetriglyceride-loweringeffectsofEPAandDHAincreasewithdose(106),butclinicallymeaningfulreductionsinserumtriglycerideconcentrationshavebeendemonstratedatdosesof2g/dayofEPA+DHA(107).Althoughlong-chainomega-3PUFAcanreducetriglycerideconcentrations,theyhavenoeffectontotalcholesterol,LDL-cholesterol,orHDL-cholesterolinblood(103).Ofnote,themechanismsbywhichlong-chainomega-3PUFAsupplementsmayreduceCHDdeathareunlikelytoinvolvealoweringoftriglyceridesasdosesusedinthestudies(~1g/day)weregenerallytoolow(104).Somestudiesincellcultureindicatedthatlong-chainomega-3PUFAmaydecreasetheexcitabilityofcardiacmusclecells(myocytes)bymodulatingionchannelconductance,whichwouldbeconsistentwithanti-arrhythmiceffectsobservedinanimalmodels(seealsoHypertriglyceridemia)(108,109). Summary Replacingdietarysaturatedfattyacidswithomega-6PUFAlowerstotalbloodcholesterol,yetthereisnoconvincingevidenceofaneffectofomega-6PUFAontheriskofmajorCVDevents.Althoughevidencesupportstheadoptionofaheart-healthydietarypatternthatincludestwoservingsofseafoodperweek(95),supplementationwithlong-chainomega-3fattyacidsisunlikelytoresultincardiovascularbenefitsingenerallyhealthypeoplewithalowCVDriskorinindividualsatriskoforwithtype2diabetesmellitus(104).Initsrecommendationsregardingomega-3fattyacidsandcardiovasculardisease(seeIntakeRecommendations),theAmericanHeartAssociationindicatesthatlong-chainomega-3PUFAsupplementationmaybeusefultoreducemortalityinpatientswithprevalentCHD(e.g.,whosufferedarecentMI)andinthosewithheartfailurewithoutpreservedventricularfunction(104). Cardiometabolicriskfactorsinindividualswithdiabetesmellitus Type2diabetesmellitus:Cardiovasculardiseaseistheleadingcauseofdeathinindividualswithdiabetesmellitus.Thedyslipidemiatypicallyassociatedwithdiabetesischaracterizedbyacombinationofhypertriglyceridemia(serumtriglycerides>200mg/dL),lowHDL-cholesterol,andabnormalLDL-cholesterol(110).Lipid-loweringtherapytonormalizediabeticdyslipidemiaandreducecardiovascularriskincludeslifestylemodificationandmedications — particularlytheuseofcholesterol-loweringstatins(111,112).Additionally,achievingglucosecontrolinpeoplewithtype2diabeteshasbeenshowntodecreasetheoccurrenceofmajormicrovascularandmacrovascularevents(113). A2014meta-analysisof19randomizedcontrolledtrials,including24,788individualswitheitherimpairedglucosemetabolismortype2diabetesmellitus,foundthatlong-chainomega-3PUFAsupplementation(doses,360-10,000mg/day;for6weeksto6years)loweredserumtriglycerideconcentrationsby0.25mmol/Lbuthadnosubstantialeffectontotalcholesterol,LDL-cholesterol,orHDL-cholesterol(114).TherewasalsonosignificanteffectonHbA1c,fastingglucose,bloodpressure,heartrate,orameasureofendothelialfunction.Fourtrialsthatlastedoverayearreportedoncardiovascularoutcomes,includingmortality.Thepooledanalysisofthesetrialsfoundnoeffectofsupplementationwithomega-3PUFAontheriskofmajorcardiovascularevents,cardiovascularmortality,all-causemortality,oracompositeendpointofall-causemortalityandhospitalizationforacardiovascularcause.Itisworthnotingthattwoofthesetrials — theAlphaOmegaTrial(115)andtheORIGINtrial(116)— includedahighproportionofparticipantswhotookcardiovascularmedications(i.e.,cholesterol-loweringstatins)(114).Anothermeta-analysisof45randomizedcontrolledtrialsin2,674participantswithtype2diabetesfoundthatsupplementationwithomega-3(400-1,800mg/dayfor2weeksto2years)ledtosmalldecreasesinbloodconcentrationsoftriglycerides,VLDL-triglycerides,LDL-cholesterol,andvLDL-cholesterol(117).Therewasnoevidenceofaneffectontotalcholesterol,HDL-cholesterol,non-esterifiedfattyacids,apolipoprotein-A1,andapolipoprotein-B.Therewasareductionincirculatingconcentrationsofpro-inflammatorycytokines,TNF-αandIL-6,inresponsetoomega-3supplementation,yetnotofC-reactiveprotein(CRP) — amarkeroflow-gradeinflammation.Omega-3PUFAsupplementationhadnoeffectonsystolicordiastolicbloodpressure.Finally,asmalldecreaseinHbA1cwasreportedinresponsetosupplementalomega-3fattyacids,yettherewasnoeffectonotherindicatorsofglycemiccontrol,especiallyfastingglucose,fastinginsulin,connecting(C-)peptide,andameasureofinsulinresistance(117). Lifestylechangesinvolvingdietarymodifications,suchasthesubstitutionofhealthyfats(mono-andpoly-unsaturatedfattyacids)forsaturatedandtransfats,arerecommendedtoreducetheriskofcardiovasculardiseaseinpeoplewithtype2diabetesmellitus(118).Intheirmostrecentupdatedrecommendationsonthepreventionofcardiovasculardiseaseinadultswithtype2diabetes,theAmericanDiabetesAssociationandAmericanHeartAssociationfoundinsufficientevidencefromlarge-scalerandomizedtrialsinindividualswithtype2diabetestosupporttheuseofomega-3fattyacidsupplements(combinedwithaheart-healthydiet)inthepreventionofcardiovascularevents(118). Gestationaldiabetes:Poorglycemiccontrolduringpregnancy,whetherduetotype1diabetes,type2diabetes,orgestationaldiabetes,increasestheriskoffetalanomalies,preeclampsia,spontaneousabortion,stillbirth,macrosomia,neonatalhypoglycemia,andneonatalhyperbilirubinemia(119).Diabetesduringpregnancyisalsoassociatedwithahigherriskofmetabolicdisordersinoffspringlaterinlife(119).AteamofinvestigatorsinIranexaminedtheeffectofomega-3PUFAsupplementationduringpregnancy,beginningat24to28weeks'gestationforsixweeks,inwomenwithgestationaldiabetes.Overall,therewasevidenceofbeneficialeffectsof1,000mg/dayofomega-3alone(120)ortogetherwithvitaminE(121)orvitaminD(122)onmarkersofglucosehomeostasisand,toalesserextent,onmarkersofoxidativestressandinflammationandbloodlipidprofile.Inonerandomized,placebo-controlledtrialin60womenwithgestationaldiabetes,supplementationwithomega-3fattyacidsandvitaminEreducedtheriskofneonatalhyperbilirubinemiayethadnoeffectontherateofcesareansection,needforinsulintherapy,maternalhospitalization,newborns'hospitalization,gestationalage,birthsize,andApgarscore(122). CurrentrecommendationsbytheAmericanDiabetesAssociationforthemanagementofgestationaldiabetesencouragethedevelopmentofanindividualizednutritionplanbetweenawomanandaregistereddietitian,highlightingtheimportanceoftheamountandtypeofcarbohydratesinthediet(119).Theuseofomega-3supplementsinthemanagementofgestationaldiabetesisnotcurrentlyunderconsideration. Type2diabetesmellitus Ameta-analysisof13randomized,controlledfeedingtrialsthatsubstitutedplant-derivedPUFA(primarilylinoleicacid[LA])forsaturatedfattyacidsorcarbohydratesfor3to16weeksingenerallyhealthyadultsshowedadecreaseinfastinginsulinconcentrationandinsulinresistancebutnoeffectonfastingglucoseconcentration(123).Moststudiesusedamixtureofomega-3andomega-6PUFAintheformofplant-derivedoilssuchthatpotentialdifferencesineffectbetweenthemcouldnotbeexamined. Ameta-analysisof20prospectivecohortstudiesconductedin10countries,inatotalof39,740participantsfreefromdiabetesatbaseline,examinedbiomarkersofomega-6intakeinrelationtotheriskofdevelopingtype2diabetesmellitus(124).LArangedfrom8.3%oftotalfattyacidsinerythrocytephospholipidsto54.5%inplasmacholesterolesters.Thelowestpercentageofarachidonicacid(AA)wasfoundinadiposetissue(0.3%)andthehighestinerythrocytephospholipids(17.0%).ThehighestversuslowestconcentrationofLAmarkersineachcompartment(phospholipids,plasmaorserum,cholesterolesters)exceptadiposetissuewasassociatedwitha35%lowerriskoftype2diabetes.Incontrast,onlyAAinplasmaorserumwasinverselyassociatedwiththeriskoftype2diabetes(124).IfLAconcentrationinbloodandadiposetissuecanprovideanobjectiveassessmentofdietaryLAintake(125),theseresultssuggestthatdietaryLAmaybeimportantforglycemiccontrolanddiabetesprevention. Metabolicsyndrome A2019meta-analysisof13observational(9cross-sectional,2case-control,1nestedcase-control,and1prospectivecohort;36,542participants)studiesshowedhigherconcentrationsofomega-3inbloodandadiposetissueandhigherlevelofomega-3intaketobeassociatedwithalowerriskofmetabolicsyndrome(126).Noassociationwasfoundbetweentissueomega-6concentrationordietaryomega-6intakelevelandtheriskofmetabolicsyndrome(126). CognitivedeclineandAlzheimer'sdisease Alzheimer’sdiseaseisthemostcommoncauseofdementiainolderadults(127).Alzheimer'sdiseaseischaracterizedbytheformationofamyloidplaqueinthebrainandnervecelldegeneration.Diseasesymptoms,includingmemorylossandconfusion,worsenovertime(128). Observationalstudies:SeveralobservationalstudieshaveexamineddietaryfishandPUFAconsumptioninrelationtorisksofcognitivedecline,dementia,andAlzheimer'sdisease.Thepooledanalysisoffivelargeprospectivecohortstudies(Three-CityStudy,Nurses'HealthStudy,Women'sHealthStudy,ChicagoHealthandAgingProject,andRushMemoryandAgingProject)thatfollowedatotalof23,688older(ages,≥65years)participants(88%women)for3.9to9.1yearsfoundslowerratesofdeclineinepisodicmemoryandglobalcognitionwithincreasingfishintakes(129).PreviousstudieshavesuggestedthattheeffectoffishorPUFAconsumptiononcognitionmaybedependentonapolipoproteinE(APOE)genotype(130,131).OfthreecommonAPOEalleles(epsilon2[ε2],ε3,andε4),thepresenceoftheAPOEε4(E4)allelehasbeenassociatedwithincreasedriskandearlieronsetofAlzheimer'sdisease(132).Itwasfoundthatlong-chainomega-3PUFAsupplementationdidnotincreaseplasmaomega-3concentrationstothesameextentinE4carriersthaninnon-carriers(133)andthatDHAmetabolismdiffersinE4carrierscomparedtonon-carriers,withgreateroxidationandlowerplasmaconcentrationsinE4carriers(134).However,neitherAPOEgenotypenorpolymorphismsin11othergenesassociatedwithAlzheimer'sdiseasewerefoundtomodifytheinverserelationshipbetweenfishintakeandriskofcognitivedeclineinthepooledanalysisofthefivecohorts(129). Inarecentmeta-analysisofobservationalstudies,eachone-servingincreaseoffishintakeperweekwasfoundtobeassociatedwitha5%lowerriskofdementiaanda7%lowerriskofAlzheimer'sdisease(135).Dietaryintakelevelofmarine-derivedDHA — butnotbloodDHAconcentration — wasalsoinverselyassociatedwiththerisksofdementiaandAlzheimer'sdisease;forinstance,a100mg/dayincrementindietaryDHAintakewasassociatedwithlowerrisksofdementia(-14%)andAlzheimer'sdisease(-37%)(135).Resultsfromtwolargecohortstudiespublishedafterthisdose-responsemeta-analysisshowedbloodDHAconcentrationtobepositivelyassociatedwithcognitiveperformanceinadults(136,137).Findingsfrompreclinicalstudiessuggestthatlong-chainomega-3fattyacidsmayhaveneuroprotectiveeffects,potentiallythroughmitigatingneuroinflammation,improvingcerebralbloodflow,and/orreducingamyloidaggregation(138). Randomizedcontrolledtrials:A2012systematicreviewidentifiedthreerandomizedcontrolledtrialsthatexaminedtheeffectofomega-3supplementationontheriskofcognitivedeclineincognitivelyhealthyolderorelderlyadults(139).Therewasnoevidenceshowinganeffectofomega-3onmeasuresofcognitivefunctionsintheseclinicaltrials.Inamorerecentsystematicreviewthatidentifiedseventrialsconductedincognitivelyhealthyparticipants,theauthorsreportedpositiveeffectsoflong-chainomega-3supplementationonmeasuresofcognitiveoutcomesinallstudiesbutthesecondlongestandthetwolargesttrials(140).Anotherseventrialsexaminedtheeffectoflong-chainomega-3supplementationinindividualswithmildcognitiveimpairment;allbutthreetrialsshowedasignificantbenefitonmeasuresofcognitivefunctionorspecificmemorytasks(140).Yet,twotrialsthatfoundnoimprovementincognitiveperformanceincludedomega-3supplementsinbothinterventionandcontrolarms(141,142). Overall,thedatafavorarolefordietsrichinlong-chainomega-3fattyacidsinslowingcognitivedecline,butlargertrialswithlongerinterventionperiodsmaybenecessarytoseeaconsistentbeneficialeffectofomega-3supplementationinolderindividualswithnormalordecliningcognitivefunctions. DiseaseTreatment Hypertriglyceridemia Aboutone-thirdofUSadultshaveserumtriglycerides>150mg/dL,and16%ofUSadultshaveserumtriglycerides>200mg/dL(143).The2011AmericanHeartAssociationguidelinesontriglyceridemanagementrecommendedtheuseofmarine-derivedomega-3fattyacidsupplements(2-4g/dayofEPAplusDHA)undermedicalsupervisiontoreducetriglycerideconcentrationsbelow100mg/dL(143).Hypertriglyceridemiacanhavevariouscauses,suchasinheritedandacquireddisordersoftriglyceridemetabolism,poordiet,and/oruseofcertainmedications(143). Severalomega-3fattyacidpreparationshavebeenapprovedbytheUSFoodandDrugAdministrationforthetreatmentofhypertriglyceridemia(104).Outofthefivecurrentlyavailablepreparations,fourcontainethylestersofEPAand/orDHAandonecontainslong-chainomega-3PUFAasfreefattyacids(104).TheEpanovaforloweringveryhightriglycerides(EVOLVE)randomizedcontrolledtrialdemonstratedthattheomega-3freefattyacidformulation(2-4g/dayfor12weeks)effectivelyreducedtriglyceridesandotheratherogenicfactors,includingvLDL-cholesterolandremnant-likecholesterolparticles,whencomparedtooliveoil(4g/day)inpatientswithseverehypertriglyceridemia(serumtriglycerides>500mg/dL)(reviewedin144).Omega-3supplementationalsodecreasedinflammation(asshownbyareductioninlipoprotein-associatedphospholipaseA2)andplateletactivation(asshownbyareductionincirculatingconcentrationsofarachidonicacid)(144,145).Thisomega-3formulationalsoprovedtobeeffectiveinreducingpersistenthypertriglyceridemia(serumtriglycerides,200-499mg/dL)inpatientstreatedwithstatins(cholesterol-loweringdrugs)(146).Statinusehasbeenfoundtoeffectivelyreducetriglycerideconcentrationsbyabout5%-20%(147).However,aresidualelevationintriglyceridesandtriglyceride-richlipoproteincholesterolmayremaininasubstantialfractionofpatientstreatedwithstatins.Comparedto4g/dayofoliveoil,omega-3supplementationwith2or4g/dayforsixweeksreducedtriglyceridesby14.6%and20.6%andnon-HDL-cholesterolby3.9%and6.9%,respectively(146).Themagnitudeofthesereductionsintriglycerideandnon-HDL-cholesterolconcentrationswassimilartowhathasbeenobservedinothertrialsthatexaminedtheuseofethylesteromega-3supplementsasadd-onstostatintherapy(146,148-150).Astudyisunderwaytoassessthebenefitofcombiningomega-3fattyacidsandstatinsontheriskofmajorcardiovasculareventsoverathree-tofive-yearperiodinpatientswithhypertriglyceridemia(144,151). Nonalcoholicfattyliverdisease Oftenassociatedwithmetabolicdisorders,nonalcoholicfattyliverdisease(NAFLD)isaconditioncharacterizedbyanexcessivelipidaccumulationintheliver(i.e.,hepatosteatosis).NAFLDcanprogresstononalcoholicsteatohepatitis(NASH)inaboutone-thirdofthepatientswithNAFLD,therebyincreasingtheriskofcirrhosisandhepatocellularcarcinoma(152,153).AnemergingfeatureofNAFLDisthedeclineinhepaticomega-3andomega-6PUFAwithdiseaseprogression(154).ConsideringthatC20-22omega-3PUFAcanreducefattyacidsynthesisandinflammation,apossibletherapeuticstrategywouldbetoincreasedietaryintakeoflong-chainomega-3PUFA.A2018meta-analysisof18randomizedcontrolledtrialsin1,424participantswithNAFLDfoundthatomega-3supplementationshowedbeneficialeffectsonliverfat,specificliverenzymaticactivities,serumtriglycerides,fastingglucose,andinsulinresistance(155).However,therewasnoevidenceofaneffectontotalcholesterol,LDL-cholesterol,HDL-cholesterol,fastinginsulin,bloodpressure,BMI,andwaistcircumference(155).Otherrecentmeta-analyseshavealsoreportedthatsupplementationwithlong-chainomega-3fattyacidsfromfish/sealoil(0.25-6.8g/dayfor3-25months)improvedhepatosteatosisandothermetabolicdisordersinbothchildrenandadultswithNAFLD(reviewedin153).AdditionalstudiesareneededtoexaminetheirefficacyinmoreseverecasesofNASH. Inflammatorydiseases Rheumatoidarthritis A2017meta-analysisof20randomizedcontrolledtrialsin1,252participantswithrheumatoidarthritisassessedtheefficacyoflong-chainomega-3PUFAsupplementationonaseriesofclinicaloutcomes(156).Omega-3supplementation(0.3-9.6g/day)for3to18monthsreducedthenumberoftenderjoints(14trials),aswellasearlymorningstiffness(15trials)andpainlevel(16trials)comparedtoplacebo.Bloodconcentrationsoftriglycerides(3trials)andpro-inflammatoryleukotrieneB4(5trials)werealsodecreasedwithsupplementalomega-3PUFA(156).Another2017meta-analysisof42randomizedcontrolledtrialsexaminedtheeffectofomega-3supplementation(mainlyasfishoil)onarthriticpaininpatientsdiagnosedwithdifferenttypesofarthritis(157).Dailyadministrationofmarine-derivedEPA(0.01-4.1g)andDHA(0.01-2.7g)forupto18monthsresultedinareductioninpatients’reportedpain(usingavisualanalogscale[VAS]forpain)inthosesufferingfromrheumatoidarthritis(22trials)andthosewithothertypesofarthritis(i.e.,juvenilearthritis,psoriaticarthritis)ormixeddiagnoses(3trials),yetnotinthosewithosteoarthritis(5trials).Theevidenceofaneffectofomega-3supplementsinpatientswithrheumatoidarthritiswasdeemedofmoderatequality(157).Ina2017systematicreviewof18trials,including1,143subjectswithrheumatoidarthritis,only4of18placebo-controlledtrialsshowedabenefitofomega-3PUFAsupplementation(2.2-3.6g/dayfor12-36weeks)onpainlevel — reportedbypatientsand/orassessedbyphysicians(158).Inmosttrials,theuseofmedications(nonsteroidalanti-inflammatorydrugs[NSAIDs]and/ordisease-modifyinganti-rheumaticdrugs[DMARDs])wascontinuedthroughouttheinterventionperiod.Resultsofafewtrialssuggestedthatomega-3PUFAcouldsparetheneedforanti-inflammatorymedicationsinsomepatientsyetfailedtoshowsuperiorityofPUFAinpainmanagement(159,160). Thelimitedbodyofevidencethatsuggestspotentialbenefitsofomega-3supplementationinrheumatoidarthritistreatmentneedsstrengtheningwithdatafromlargerstudiesconductedforlongerinterventionperiods(157,158). Inflammatoryboweldisease Crohn'sdisease:A2013systematicreviewevaluatedtheefficacyofomega-3supplementationinpatientswithCrohn'sdisease,consideringtheevidencebasefrombothshort-term(9to24weeks)andlong-term(1year)trials(161).Amongfivetrialsthatevaluatedtheefficacyofomega-3supplementationonrelapserates,conflictingoutcomeswerereported.Mosttrialswerelimitedbysmallsamplesizesandshortduration — uptothreeyearsmaybenecessarytoseeaneffectonrelapseratesgiventhenaturalrelapsing-remittingcourseofthedisease.Thetwolargestandmostrecenttrials(EPIC-1andEPIC-2)showednosignificanteffectofomega-3supplementationonindicatorsofCrohn'sdiseaseremissioncomparedtoplacebo(162).Othersystematicreviewsoftheliteraturereachedsimilarconclusions(163-165).Threeshort-termtrialsshowedpositiveeffectsofomega-3supplementationonplasmabiochemicalparameters(e.g.,reducedinflammatorycytokineexpression,increasedplasmaEPAandDHAconcentrations)comparedtocontrols(161).Inspiteofitsimpactonbiochemicalchangesintheshort-term,however,theabilityofomega-3supplementationtomaintainremissionoreffectclinicallymeaningfulchangesinCrohn'sdiseaseisnotsupportedbythecurrentevidence(164). Ulcerativecolitis:Sevenrandomizedcontrolledtrialsoffishoilsupplementationinpatientswithactiveulcerativecolitisreportedsignificantimprovementinatleastoneoutcomemeasure,suchasdecreasedcorticosteroiduse,improveddiseaseactivityscores,orimprovedhistologyscores(163).Inpatientswithinactiveulcerativecolitis,omega-3supplementationhadnoeffectonrelapseratescomparedtoplaceboinfourseparatetrials(163,165). Whilenoserioussideeffectswerereportedinanytrialsoffishoilsupplementationforthemaintenanceorremissionofinflammatoryboweldisease,diarrheaanduppergastrointestinalsymptomsoccurredmorefrequentlywithomega-3treatment(163-165). Asthma Inflammatoryeicosanoids(leukotrienes)derivedfromarachidonicacid(AA;20:4n-6)arethoughttoplayanimportantroleinthepathologyofasthma(32).Becauseincreasingomega-3fattyacidintakehasbeenfoundtodecreasetheformationofAA-derivedleukotrienes,anumberofclinicaltrialshaveexaminedtheeffectsoflong-chainomega-3fattyacidsupplementationonasthma.Althoughthereissomeevidencethatomega-3fattyacidsupplementationcandecreasetheproductionofinflammatorymediatorsinasthmaticpatients(166,167),evidencethatomega-3fattyacidsupplementationdecreasestheclinicalseverityofasthmaincontrolledtrialshasbeeninconsistent(168).Threesystematicreviewsofrandomizedcontrolledtrialsoflong-chainomega-3fattyacidsupplementationinasthmaticadultsandchildrenfoundnoconsistenteffectsonclinicaloutcomemeasures,includingpulmonaryfunctiontests,asthmaticsymptoms,medicationuse,orbronchialhyperreactivity(169-171). ImmunoglobulinAnephropathy ImmunoglobulinA(IgA)nephropathyisakidneydisorderthatresultsfromthedepositionofIgAintheglomeruliofthekidneys.ThecauseofIgAnephropathyisnotclear,butprogressiverenalfailuremayeventuallydevelopin15%-40%ofpatients(172).SinceglomerularIgAdepositionresultsinincreasedproductionofinflammatorymediators,omega-3fattyacidsupplementationcouldpotentiallymodulatetheinflammatoryresponseandpreserverenalfunction. A2012meta-analysisassessedtheefficacyofomega-3fattyacidsupplementationonadultIgAnephropathy(173).Fiverandomizedcontrolledtrialswereincludedinananalysisinvolving239patients(meanage,37-41years)whoreceivedplaceboorsupplementalEPA+DHAatdosesof1.4to5.1g/dayfor6to24months.Comparedwithcontrolgroups,omega-3supplementationhadnosignificanteffectonurineproteinexcretionorglomerularfiltrationrate.Onlytwotrialsmeasuredchangesinserumcreatinine(amarkerofrenalfunction)andend-stagerenaldisease — omega-3treatmenthadabeneficialeffectonthesetwoparametersinbothtrials.Noadverseeventsassociatedwithomega-3supplementationwerereportedinanyofthetrials.Amorerecentreviewoftheliteratureidentifiedsixtrialsshowingevidenceofomega-3supplementationslowingIgAnephropathydiseaseprogressionandthreetrialsreportingnoeffect(174).Additionally,preliminarydatasuggestedthatthepotentialsynergisticactionsofaspirinandlong-chainomega-3PUFAsmightconstituteapromisingtreatmentoption(168). Neuropsychiatricdisorders Autismspectrumdisorders Autismspectrumdisorders(ASD)refertothreeneurodevelopmentaldisordersofvariableseverity,namelyautism,Aspergersyndrome,andpervasivedevelopmentdisorder.ASDarecharacterizedbyabnormalinformationprocessinginthebrainduetoalterationsinthewaynervecellsandtheirsynapsesconnectandorganize.ASDarethoughttohaveastronggeneticbasis,yetenvironmentalfactorsincludingdietmayplayanimportantrole.Giventhatomega-3andomega-6PUFAarenecessaryforneuronalgrowthandsynapseformation(seeBiologicalActivities),theymaybeofsignificantbenefitinthepreventionand/ormanagementofASD.ThisissupportedbyobservationsofPUFAabnormalitiesinbloodofchildrenwithASD,whencomparedtotheirpeerswithnoneurodevelopmentaldisorders(175).Ameta-analysisofcase-controlstudiesreportedlowerbloodconcentrationsofDHAandEPAinchildrenwithASDcomparedtotypicallydevelopingchildren;yet,theratiooftotalomega-6toomega-3fattyacidswassimilarbetweenchildrenwithandwithoutASDsymptoms(176).Asystematicreviewbythesameauthorsidentifiedsixrandomizedcontrolledtrialsthatexaminedtheeffectofprimarilylong-chainomega-3PUFAonASDsymptoms(176).Allthestudiesincludedchildren;onestudyalsoincludedadults≤28years(177).FourtrialsusedEPA(0.70-0.84g/day)plusDHA(0.46-0.70g/day)(178-181),onetrialusedDHA(0.24g/day)plusAA(0.24g/day)(177),andonetrialonlyusedonlyDHA(0.20g/day)(182).Apooledanalysisoffour(177-180)ofthesetrials,includingatotalof107participants,showedasmallimprovementinmeasuresofsocialinteractionandrepetitiveandrestrictiveinterestsandbehaviorswithlong-chainPUFAsupplementationfor6to16weeks;however,therewasnoeffectonmeasuresofcommunicationandASDco-existingconditions,suchashyperactivity,irritability,sensoryissues,andgastrointestinalsymptoms(176).Twoadditionalsystematicreviewsandmeta-analyses,alsopublishedin2017,identifiedthesamesetoftrials.Onemeta-analysissuggestedabenefitoflong-chainPUFAonmeasuresoflethargyandstereotypybutfoundnooverallclinicalimprovementcomparedtoplacebo(183).Theothermeta-analysissuggestedanimprovementregardinglethargyyetaworseningofexternalizingbehaviorandsocialskillsinchildrensupplementedwithomega-3PUFA(184). Theavailableevidenceisbasedonfewtrialsofsmallsamplesizesandisthustoolimitedtodrawfirmconclusionsregardingthepotentialbenefitoflong-chainPUFAsupplementationinASDmanagement. Majordepressionandbipolardisorder Datafromecologicstudiesacrossdifferentcountriessuggestedaninverseassociationbetweenseafoodconsumptionandnationalratesofmajordepression(185)andbipolardisorder(186). Severalsmallstudieshavefoundomega-3fattyacidconcentrationstobelowerinplasma(187-189)andadiposetissue(190)ofindividualssufferingfromdepressioncomparedtocontrols.Althoughitisnotknownhowomega-3fattyacidintakeaffectstheincidenceofdepression,modulationofneuronalsignalingpathwaysandeicosanoidproductionhavebeenproposedaspossiblemechanisms(191).Theremaybesomebenefitofomega-3PUFAsupplementationondepressivedisorders,butitisdifficulttocomparestudiesanddrawconclusionsduetogreatheterogeneityamongthetrials(192,193).Smallsamplesizes,lackofstandardizationoftherapeuticdoses,typeofomega-3PUFAadministered,co-treatmentwithpharmacologicalagents,anddiagnosticcriteriavaryamongthetrials.A2012systematicreviewofallpublishedrandomizedcontrolledtrialsinvestigatedtheeffectofomega-3PUFAsupplementationonthepreventionandtreatmentofseveraltypesofdepressionandotherneuropsychiatricdisorders(192).Withrespecttomajordepression,moststudiesreportedapositiveeffectofomega-3supplementsondepressivesymptoms,thoughefficacyisstillconsideredinconclusivegiventhegreatvariabilityamongtrials.Afewthemesemergedfromthisreview:moretrialsreportedpositiveeffectforomega-3PUFAsupplementsasanadjuncttopharmacologicaltreatment;inmonotherapytrials,EPAalonewasmoreeffectivethanDHAalone;andincombinationtrials,positiveeffectsweremorelikelyifanEPA:DHAratioof>1.5–2.0wasadministered. A2014meta-analysisgroupedtrialsbytypeofdiagnosisofdepression(194).Apositiveeffectofomega-3supplementationwasfoundin11trialsinparticipantswithadiagnosisofmajordepressivedisorder(accordingtotheDiagnosticandStatisticalManualofMentalDisorders[DSM]criteria).Omega-3supplementationalsoappearedtobeeffectiveinthepooledanalysisofeighttrialsinparticipantsnotformallydiagnosedwithmajordepressivedisorder,i.e.,adultswithdepressivesymptomsdespiteongoingtreatment,untreatedpatientswithmild-to-severedepressedmood,patientswithahistoryofatleastonemajordepressiveepisode,womenwithborderlinepersonalitydisorder,patientswithrecurrentself-harm,andpostmenopausalwomenwithpsychologicaldistressanddepressivesymptoms.Therewasnomoodimprovementwithomega-3supplementsingenerallyhealthyadultsexperiencingdepressivesymptoms,assuggestedbythepooledanalysisofsixtrials(194). Finally,a2017Cochranesystematicreviewandmeta-analysisof20randomizedcontrolledtrialsreportedasmallbenefitofomega-3supplementationondepressivesymptomswhencomparedtoplacebo,yettheevidencewasdeemedofverylowqualityandthepositiveeffectwasjudgedlikelytobebiasedandnotclinicallysignificant(195). Unipolardepressionandbipolardisorderareconsidereddistinctpsychiatricconditions,althoughmajordepressionoccursinboth.A2016meta-analysisofeightcase-controlstudiesthatcomparedthePUFAcompositionofredbloodcellmembranesbetweenpatientswithbipolardisorderandhealthysubjectsshowedabnormallylowredbloodcellDHAconcentrationswithbipolardisorder(196).Aswithmajordepression,reviewsoftrialsindicatedthatomega-3supplementationmayhaveapositiveeffectasanadjuncttotherapyinpatientswithbipolardisorder(192,194).Additionally,a2016randomized,placebo-controlledtrialin100participantswithbipolardisorderreportedareductionintheseverityofmanicepisodeswithdailysupplementationof1,000mgomega-3PUFAforthreemonths(197). Whilethereissomepromisingevidencefortheuseofomega-3fattyacidsformajordepressionandbipolardisorder,additionaltrialsthataccountfordietaryomega-3intake,changesinredbloodcellPUFAconcentrations,theratioofEPA:DHAprovided,andco-treatmentwithmedicationsarenecessary. Schizophrenia A2013meta-analysisof18studiescomparedthePUFAcompositionofredbloodcellmembranesinpatientswithschizophreniatoindividualswithoutthedisorder(198).Themajorityofstudiesinvestigatedmedicatedpatients,thoughtheauthorsseparatedtheanalysisintothreegroupsofpatientsattimeofmeasurementinordertoaccountforpossibleconfoundingfrompharmacologicagents:antipsychotic-medicated,antipsychotic-naïve,andantipsychotic-free.Overall,decreasedconcentrationsofDPA,DHA,andAAinredbloodcellmembraneswereassociatedwiththeschizophrenicstate.SeveralmechanismsmayaccountforPUFAabnormalitiesinschizophrenia,suchasalteredlipidmetabolism,increasedoxidativestress,orchangesindietconsequenttodisease-relatedbehavior. Theuseoflong-chainomega-3fattyacidsupplementstoalleviatesymptomsofschizophreniaortomitigateadverseeffectsofantipsychoticmedicationshasbeeninvestigatedinanumberofclinicaltrials(194,199).Inarecentrandomized,placebo-controlledtrialin50subjectswithrecentonsetofschizophreniawhoweremedicated,dailysupplementationwithEPA(740mg)andDHA(400mg)reducedpsychoticsymptoms(assessedwiththeBriefPsychiatricRatingScale)onlyinthosewhowerenottakingtheanxiolytic,lorazepam(Ativan)(200).Overall,however,therewasnoeffectoflong-chainPUFAsupplementsonschizophreniasymptoms.Yet,giventhehighsafetyprofileoffishoilsupplementsandsomeevidenceofapositiveeffectofEPAsupplementationinasubsetoftrials,somecliniciansmayconsiderEPAausefuladjuncttoantipsychotictherapyinpatientswithschizophrenia. Alzheimer'sdiseaseanddementia Severalmechanismssuggestthatomega-3PUFAsupplementationmayimprovethecognitiveperformanceofindividualswithAlzheimer'sdiseaseandothertypesofdementia.Inparticular,theantioxidativeandanti-inflammatorypropertiesofthesePUFAmayhelpprotectneurons,promotesynapticplasticity,andlimitcellulardeath.ThePUFAcompositionofthedietappearstoinfluencebloodcholesterol,whichmayplayaroleinthepathologyofAlzheimer'sdisease.However,thecurrentevidencefromclinicaltrialsisnotsupportiveofomega-3supplementationinthetreatmentofAlzheimer’sdiseaseinhumans.A2016Cochranereviewidentifiedthreerandomized,placebo-controlledtrialsinpatientswithAlzheimer'sdiseaseofmild-to-moderateseverity(201).ThesetrialscompareddailysupplementationwithDHA(between675mgand1,700mg)andEPA(between600mgand975mg)toaplacebofor12months(202,203)or18months(204).Ofnote,thestudybyQuinnetal.(204)alsoincluded4mg/dayofvitaminE(usedaspreservative — seealsoNutrientinteractions)intheinterventionarm,andthestudybyFreund-Levietal.(202)includedDHA(900-1,100mg/day)butnoEPA.Thepooledanalysisofthesetrialsshowednobeneficialeffectofomega-3supplementationonmeasuresofglobalandspecificcognitivefunctions,measuresoffunctionaloutcomes,andmeasuresofdementiaseverity(201).Therewasnodifferencebetweeninterventionandplaceboarmsregardingtheoccurrenceofadverseeffects(201). Sources Foodsources Humanscansynthesizearachidonicacid(AA)fromlinoleicacid(LA)andeicosapentaenoicacid(EPA)anddocosapentaenoicacid(DHA)fromα-linolenicacid(ALA)throughaseriesofdesaturationandelongationreactions.EPAanddocosapentaenoicacid(DPA)arealsoobtainedfromtheretroconversionofDHA(seeMetabolismandBioavailability).Duetolowconversionefficiency,itisadvisedtoobtainEPAandDHAfromadditionalsources. Omega-6fattyacids Linoleicacid(LA):FoodsourcesofLAincludevegetableoils,suchassoybean,safflower,andcornoil;nuts;seeds;andsomevegetables.DietarysurveysintheUSindicatethattheaverageadultintakeofLArangesfrom17to20g/dayformenand12to13g/dayforwomen(78).SomefoodsthatarerichinLAarelistedinTable2. Table2.FoodSourcesofLinoleicAcid(18:2n-6)(205) Food Serving LinoleicAcid(g) Saffloweroil 1tablespoon 10.1 Sunflowerseeds,oilroasted 1ounce 9.7 Pinenuts 1ounce 9.4 Sunfloweroil 1tablespoon 8.9 Cornoil 1tablespoon 7.3 Soybeanoil 1tablespoon 6.9 Pecans,oilroasted 1ounce 6.4 Brazilnuts 1ounce 5.8 Sesameoil 1tablespoon 5.6 Arachidonicacid:Animals,butnotplants,canconvertLAtoAA.Therefore,AAisabsentinvegetableoilsandfatsandpresentinsmallamountsinmeat,poultry,andeggs. Omega-3fattyacids α-Linolenicacid(ALA):Flaxseeds,walnuts,andtheiroilsareamongtherichestdietarysourcesofALA.CanolaoilisalsoanexcellentsourceofALA.DietarysurveysintheUSindicatethataverageadultintakesforALArangefrom1.8to2.0g/dayformenandfrom1.4to1.5g/dayforwomen(78).SomefoodsthatarerichinALAarelistedinTable3. Table3.FoodSourcesofα-LinolenicAcid(18:3n-3)(205) Food Serving α-Linolenicacid(g) Flaxseedoil 1tablespoon 7.3 Chiaseeds,dried 1ounce 5.1 Walnuts,English 1ounce 2.6 Flaxseeds,ground 1tablespoon 1.6 Walnutoil 1tablespoon 1.4 Canolaoil 1tablespoon 1.3 Soybeanoil 1tablespoon 0.9 Mustardoil 1tablespoon 0.8 Walnuts,black 1ounce 0.6 Tofu,firm ½cup 0.2 Eicosapentaenoicacid(EPA)anddocosahexaenoicacid(DHA):DietarysurveysintheUSindicatethataverageadultintakesofEPArangefrom0.03to0.06g/day,andaverageadultintakesofDHArangefrom0.05to0.10g/day(78).OilyfisharethemajordietarysourceofEPAandDHA;omega-3fattyacid-enrichedeggsarealsoavailableintheUS.SomefoodsthatarerichinEPAandDHAarelistedinTable4. Table4.FoodSourcesofEPA(20:5n-3)andDHA(22:6n-3)(107) Food Serving EPA(g) DHA(g) AmountProviding 1gofEPA+DHA Herring,Pacific 3ounces* 1.06 0.75 1.5ounces Salmon,chinook 3ounces 0.86 0.62 2ounces Sardines,Pacific 3ounces 0.45 0.74 2.5ounces Salmon,Atlantic 3ounces 0.28 0.95 2.5ounces Oysters,Pacific 3ounces 0.75 0.43 2.5ounces Salmon,sockeye 3ounces 0.45 0.60 3ounces Trout,rainbow 3ounces 0.40 0.44 3.5ounces Tuna,canned,white 3ounces 0.20 0.54 4ounces Crab,Dungeness 3ounces 0.24 0.10 9ounces Tuna,canned,light 3ounces 0.04 0.19 12ounces *Athree-ounceservingoffishisaboutthesizeofadeckofcards. Supplements Omega-6fattyacids Borageseedoil,eveningprimroseoil,andblackcurrantseedoilarerichinγ-linolenicacid(GLA;18:3n-6)andareoftenmarketedasGLAoressentialfattyacid(EFA)supplements(206). Omega-3fattyacids Flaxseedoil(alsoknownasflaxoilorlinseedoil)isavailableasanALAsupplement.Anumberoffishoilsaremarketedasomega-3fattyacidsupplements.Theomega-3fattyacidsfromnaturalfishoilareinthetriglycerideform,oftenwithonlyoneofthreeattachedfattyacidsanomega-3;thus,upto70%offattyacidsprovidedmaybeothertypes(3).EthylestersofEPAandDHA(ethyl-EPAandethyl-DHA)areconcentratedsourcesoflong-chainomega-3fattyacidsthatprovidemoreEPAandDHApergramofoil.KrilloilcontainsbothEPAandDHAandisconsideredcomparabletofishoilasasourceoftheselong-chainPUFA(207).CodliveroilisalsoarichsourceofEPAandDHA,butsomecodliveroilpreparationsmaycontainexcessiveamountsofpreformedvitaminA(retinol)andvitaminD(206).DHAsupplementsderivedfromalgalandfungalsourcesarealsoavailable.BecausedietaryDHAcanberetroconvertedtoEPAandDPAinhumans,DHAsupplementationrepresentsyetanotheralternativetofishoilsupplements(seeMetabolismandBioavailability). ThecontentofEPAandDHAvariesineachofthesepreparations,makingitnecessarytoreadproductlabelsinordertodeterminetheEPAandDHAlevelsprovidedbyaparticularsupplement.Allomega-3fattyacidsupplementsareabsorbedmoreefficientlywithmeals.Dividingone'sdailydoseintotwoorthreesmallerdosesthroughoutthedaywilldecreasetheriskofgastrointestinalsideeffects(seeSafety). Infantformula In2001,theFDAbeganpermittingtheadditionofDHAandAAtoinfantformulaintheUnitedStates(208).Presently,manufacturersarenotrequiredtolisttheamountsofDHAandAAaddedtoinfantformulaonthelabel.However,mostinfantformulamanufacturersprovidethisinformation.TheamountsaddedtoformulasintheUSrangefrom8to17mgDHA/100calories(5floz)andfrom16to34mgAA/100calories.Forexample,aninfantdrinking20flozofDHA-enrichedformuladailywouldreceive32to68mg/dayofDHAand64to136mg/dayofAA. Safety Adverseeffects γ-Linolenicacid(18:3n-6) Supplementalγ-linolenicacidisgenerallywelltolerated,andseriousadversesideeffectshavenotbeenobservedatdosesupto2.8g/dayfor12months(209).Highdosesofborageseedoil,eveningprimroseoil,orblackcurrantseedoilmaycausegastrointestinalupset,loosestools,ordiarrhea(206).Becauseofcasereportsthatsupplementationwitheveningprimroseoilinducedseizureactivityinpeoplewithundiagnosedtemporallobeepilepsy(210),peoplewithahistoryofseizuresoraseizuredisorderaregenerallyadvisedtoavoideveningprimroseoilandotherγ-linolenicacid-richoils(206). α-Linolenicacid(18:3n-3) Althoughflaxseedoilisgenerallywelltolerated,highdosesmaycauseloosestoolsordiarrhea(211).Allergicandanaphylacticreactionshavebeenreportedwithflaxseedandflaxseedoilingestion(212). Eicosapentaenoicacid(20:5n-3)anddocosahexaenoicacid(22:6n-3) SeriousadversereactionshavenotbeenreportedinthoseusingfishoilorotherEPAandDHAsupplements.ThemostcommonadverseeffectoffishoilorEPAandDHAsupplementsisafishyaftertaste.Belchingandheartburnhavealsobeenreported.Additionally,highdosesmaycausenauseaandloosestools. Potentialforexcessivebleeding:Thepotentialforhighomega-3fattyacidintakes,especiallyEPAandDHA,toprolongbleedingtimeshasbeenwellstudiedandmayplayaroleinthecardioprotectiveeffectsofomega-3fattyacids.AlthoughexcessivelylongbleedingtimesandincreasedincidenceofhemorrhagicstrokehavebeenobservedinGreenlandEskimoswithveryhighintakesofEPA+DHA(6.5g/day),itisnotknownwhetherhighintakesofEPAandDHAaretheonlyfactorresponsiblefortheseobservations(1).TheUSFDAhasruledthatintakesupto3g/dayoflong-chainomega-3fattyacids(EPAandDHA)areGenerallyRecognizedAsSafe(GRAS)forinclusioninthediet,andavailableevidencesuggeststhatintakeslessthan3g/dayareunlikelytoresultinclinicallysignificantbleeding(107).AlthoughtheUSInstituteofMedicinedidnotestablishatolerableupperintakelevel(UL)foromega-3fattyacids,cautionwasadvisedwiththeuseofsupplementalEPAandDHA,especiallyinthosewhoareatincreasedriskofexcessivebleeding(seeDruginteractionsandNutrientinteractions)(1,206). Potentialforimmunesystemsuppression:Althoughthesuppressionofinflammatoryresponsesresultingfromincreasedomega-3fattyacidintakesmaybenefitindividualswithinflammatoryorautoimmunediseases,anti-inflammatorydosesofomega-3fattyacidscoulddecreasethepotentialoftheimmunesystemtodestroypathogens(213).Studiescomparingmeasuresofimmunecellfunctionoutsidethebody(exvivo)atbaselineandaftersupplementingpeoplewithomega-3fattyacids,mainlyEPAandDHA,havedemonstratedimmunosuppressiveeffectsatdosesaslowas0.9g/dayforEPAand0.6g/dayforDHA(1).Althoughitisnotclearifthesefindingstranslatetoimpairedimmuneresponsesinvivo,cautionshouldbeobservedwhenconsideringomega-3fattyacidsupplementationinindividualswithcompromisedimmunesystems. Potentialothereffects:Althoughfishoilsupplementsareunlikelytoaffectglucosehomeostasis,peoplewithdiabetesmellituswhoareconsideringfishoilsupplementsshouldinformtheirphysicianandbemonitorediftheychoosetotakethem(206). Infantformula InearlystudiesofDHA-enrichedinfantformula,EPA-andDHA-richfishoilwasusedasasourceofDHA.However,somepreterminfantsreceivingfishoil-enrichedformulahaddecreasedplasmaAAconcentrations,whichwereassociatedwithdecreasedweight(butnotlengthandheadcircumference)(214,215).ThiseffectwasattributedtothepotentialforhighconcentrationsofEPAtointerferewiththesynthesisofAA,whichisessentialfornormalgrowth.Consequently,EPAwasremovedandAAwasaddedtoDHA-enrichedformula.CurrentlyavailableinfantformulasintheUScontainonlyAAandDHAderivedfromalgalorfungalsources,ratherthanfishoil.RandomizedcontrolledtrialshavenotfoundanyadverseeffectsongrowthininfantsfedformulasenrichedwithAAandDHAforuptooneyear(216). Pregnancyandlactation Thesafetyofsupplementalomega-3andomega-6fattyacids,includingborageseedoil,eveningprimroseoil,blackcurrantseedoil,andflaxseedoil,hasnotbeenestablishedinpregnantorlactating(breast-feeding)women(217).Studiesoffishoilsupplementationduringpregnancyandlactationhavenotreportedanyseriousadverseeffects,butuseofomega-6/omega-3PUFA-containingsupplementsandfishoilsupplementsinpregnantornursingwomenshouldbemonitoredbyaphysician(seeContaminantsinfishandContaminantsinsupplements)(206). Contaminantsinfish Somespeciesoffishmaycontainsignificantlevelsofmethylmercury,polychlorinatedbiphenyls(PCBs),orotherenvironmentalcontaminants(218).Ingeneral,largerpredatoryfish,suchasswordfish,tendtocontainthehighestlevelsofthesecontaminants.Removingtheskin,fat,andinternalorgansofthefishpriortocookingandallowingthefattodrainfromthefishwhileitcookswilldecreaseexposuretoanumberoffat-solublepollutants,suchasPCBs(219).However,methylmercuryisfoundthroughoutthemuscleoffish,sothesecookingprecautionswillnotreduceexposuretomethylmercury.Organicmercurycompoundsaretoxicandexcessiveexposurecancausebrainandkidneydamage.Thedevelopingfetus,infants,andyoungchildrenareespeciallyvulnerabletothetoxiceffectsofmercuryonthebrain.Inordertolimittheirexposuretomethylmercury,theUSFoodandDrugAdministration(FDA)andEnvironmentalProtectionAgencyhaveformulatedjointrecommendationsforwomenwhomaybecomepregnant,pregnantwomen,breast-feedingwomen,andparents.TheserecommendationsarepresentedinTable5. FormoreinformationabouttheFDA/EnvironmentalProtectionAgencyadvisoryforpregnantwomenandparentsofyoungchildrenoneatingfish,seetheironlinebrochure.MoreinformationaboutmercurylevelsincommercialfishandshellfishisavailablefromtheFDA. Ofnote,the2015-2020DietaryGuidelinesforAmericansrecommendtheconsumptionofsalmon,anchovies,herring, shad,sardines,Pacificoysters,trout,andAtlanticandPacificmackerel(notkingmackerel),whicharehigherinEPAandDHAandlowerinmethylmercury(220). Contaminantsinsupplements Althoughconcernshavebeenraisedregardingthepotentialforomega-3fattyacidsupplementsderivedfromfishoiltocontainmethylmercury,PCBs,anddioxins,severalindependentlaboratoryanalysesintheUShavefoundcommerciallyavailableomega-3fattyacidsupplementstobefreeofmethylmercury,PCBs,anddioxins(221).Theabsenceofmethylmercuryinomega-3fattyacidsupplementscanbeexplainedbythefactthatmercuryaccumulatesinthemuscle,ratherthanthefatoffish(107).Ingeneral,fishbodyoilscontainlowerconcentrationsofPCBsandotherfat-solublecontaminantsthanfishliveroils.Additionally,fishoilsthathavebeenmorehighlyrefinedanddeodorizedcontainlowerconcentrationsofPCBs(222).Pyrrolizidinealkaloids,potentiallyhepatotoxicandcarcinogeniccompounds,arefoundinvariouspartsoftheborageplant.Peoplewhotakeborageoilsupplementsshoulduseproductsthatarecertifiedfreeofunsaturatedpyrrolizidinealkaloids(206). Table5.RecommendationstoLimitExposuretoSeafoodMethylmercury(219) 1.Eat8-12ouncesofavarietyoffishaweek That’s2or3servingsoffishaweek Foryoungchildren,givethem2or3servingsoffishaweekwiththeportionrightforthechild’sageandcalorieneeds. 2.Choosefishlowerinmercury. Manyofthemostcommonlyeatenfisharelowerinmercury. Examplesincludesalmon,shrimp,pollock,tuna(lightcanned),tilapia,catfish,andcod. 3.Avoid4typesoffish:tilefishfromtheGulfofMexico,shark,swordfish,andkingmackerel. These4typesoffisharehighestinmercury. Limitwhite(albacore)tunato6ouncesaweek. 4.Wheneatingfishyouorothershavecaughtfromstreams,rivers,andlakes,payattentiontofishadvisoriesonthosewaterbodies. Ifadviceisn’tavailable,adultsshouldlimitsuchfishto6ouncesaweekandyoungchildrento1to3ouncesaweekandnoteatotherfishthatweek. 5.Whenaddingmorefishtoyourdiet,besuretostaywithinyourcalorieneeds. Druginteractions γ-Linolenicacidsupplements,suchaseveningprimroseoilorborageseedoil,mayincreasetheriskofseizuresinpeopleonphenothiazines(neurolepticagents),suchaschlorpromazine(210).Highdosesofblackcurrantseedoil,borageseedoil,eveningprimroseoil,flaxseedoil,andfishoilmayinhibitplateletaggregation;therefore,thesesupplementsshouldbeusedwithcautioninpeopleonanticoagulantmedications(206).Inparticular,peopletakingfishoilorlong-chainomega-3fattyacid(EPAandDHA)supplementsincombinationwithanticoagulantdrugs,includingaspirin,clopidogrel(Plavix),dalteparin(Fragmin),dipyridamole(Persantine),enoxaparin(Lovenox),heparin,ticlopidine(Ticlid),andwarfarin(Coumadin),shouldhavetheircoagulationstatusmonitoredusingastandardizedprothrombintimeassay(internationalnormalizedratio[INR]).Onesmallstudyfoundthat3g/dayor6g/dayoffishoildidnotaffectINRvaluesin10patientsonwarfarinoverafour-weekperiod(223).However,acasereportdescribedanindividualwhorequiredareductionofherwarfarindosewhenshedoubledherfishoildosefrom1g/dayto2g/day(224). Nutrientinteractions VitaminE Outsidethebody,PUFAbecomerancid(oxidized)moreeasilythansaturatedfattyacids.Fat-solubleantioxidants,suchasvitaminE(α-tocopherol),playanimportantroleinpreventingtheoxidationofPUFA.Insidethebody,resultsofanimalstudiesandlimiteddatainhumanssuggestthattheamountofvitaminErequiredtopreventlipidperoxidationincreaseswiththeamountofPUFAconsumed(225).OnewidelyusedrecommendationforvitaminEintakeis0.6mgofα-tocopherolpergramofdietaryPUFA.Thisrecommendationwasbasedonasmallstudyinmenandtheratioofα-tocopheroltoLAintheUSdietandhasnotbeenverifiedinmorecomprehensivestudies.AlthoughEPAandDHAareeasilyoxidizedoutsidethebody,itispresentlyunclearwhethertheyaremoresusceptibletooxidativedamagewithinthebody(226).HighvitaminEintakeshavenotbeenfoundtodecreasebiomarkersofoxidativedamagewhenEPAandDHAintakesareincreased(227,228),butsomeexpertsbelievethatanincreaseinPUFAintake,particularlyomega-3PUFAintake,shouldbeaccompaniedbyanincreaseinvitaminEintake(1). IntakeRecommendations USInstituteofMedicine TheFoodandNutritionBoardoftheUSInstituteofMedicine(nowtheNationalAcademyofMedicine)hasestablishedadequateintake(AI)foromega-6andomega-3fattyacids(Tables6and7)(1). Table6.AdequateIntake(AI)forOmega-6FattyAcids(1) LifeStage Age Source Males(g/day) Females(g/day) Infants 0-6months Omega-6PUFA* 4.4 4.4 Infants 7-12months Omega-6PUFA* 4.6 4.6 Children 1-3years LA# 7 7 Children 4-8years LA 10 10 Children 9-13years LA 12 10 Adolescents 14-18years LA 16 11 Adults 19-50years LA 17 12 Adults 51yearsandolder LA 14 11 Pregnancy allages LA - 13 Breast-feeding allages LA - 13 *Thevariousomega-6polyunsaturatedfattyacids(PUFA)presentinhumanmilkcancontributetotheAIforinfants.#LA,linoleicacid Table7.AdequateIntake(AI)forOmega-3FattyAcids(1) LifeStage Age Source Males(g/day) Females(g/day) Infants 0-6months ALA,EPA,DHA* 0.5 0.5 Infants 7-12months ALA,EPA,DHA 0.5 0.5 Children 1-3years ALA 0.7 0.7 Children 4-8years ALA 0.9 0.9 Children 9-13years ALA 1.2 1.0 Adolescents 14-18years ALA 1.6 1.1 Adults 19yearsandolder ALA 1.6 1.1 Pregnancy allages ALA - 1.4 Breast-feeding allages ALA - 1.3 *Allomega-3polyunsaturatedfattyacidspresentinhumanmilkcancontributetotheAIforinfants.ALA,α-linolenicacid;EPA,eicosapentaenoicacid;DHA,docosahexaenoicacid. Giventheestablishedhealthbenefitsofconsumingatleasttwoservingsofoilyfishperweek,providingapproximately400to500mgEPA+DHA,someresearchershaveproposedthattheUSInstituteofMedicine(nowtheNationalAcademyofMedicine)establishdietaryreferenceintakes(DRIs)forEPA+DHA(27).Fornow,therearenoDRIsforEPAandDHAspecifically. Becausematernaldietaryintakeoflong-chainPUFAdeterminestheDHAstatusofthenewborn,severalexpertpanelsintheUSrecommendthatpregnantandlactatingwomenconsumeatleast200mgDHAperday,closetotheamountrecommendedforadultsingeneral(250mg/day)(70,229).Thepotentialbenefitsassociatedwithobtaininglong-chainomega-3fattyacidsthroughmoderateconsumptionoffish(e.g.,1-2servingsweekly)duringpregnancyandlactationoutweighanyrisksofcontaminantexposure,thoughfishwithhighconcentrationsofmethylmercuryshouldbeavoided(218).Forinformationaboutcontaminantsinfishandguidelinesforfishconsumptionbywomenofchildbearingage,seeContaminantsinfish. 2015-2020DietaryGuidelinesforAmericans The2015-2020DietaryGuidelinesproviderecommendationsfornutritionalgoalsforlinoleicacidandα-linolenicacidbasedontheDRIs(seeTables6and7).Seafood,nuts,seeds,andoils,whichareallpartofhealthydietarypatterns,provideessentialfattyacids.The2015-2020DietaryGuidelinesprovidedietaryrecommendationsregardingtheamountsofthesefoodsforthosewhochoosetofollowahealthyUS-styleeatingpattern,ahealthyMediterranean-styleeatingpattern,orahealthyvegetarianeatingpattern(Table8). Table8.2015-2020DietaryGuidelinesforAmericans’RecommendationsforSourcesofOmega-3andOmega-6PolyunsaturatedFattyAcids*(220) Food HealthyEatingPatterns US-style Mediterranean-style Vegetarian Seafood(oz-eq/week) 8 15 – Nuts,seeds,soyproducts(oz-eq/week) 5 5 7 Oils(g/week) 27 27 27 *Recommendationsfortotaldailyenergyneedsof2,000caloriesperday.Estimatesofdailycalorieneedsaccordingtoage,gender,andphysicalactivitycanbefoundintheAppendix2ofthe‘2015-2020DietaryGuidelinesforAmericans’report(220). Oz-eq,ounce-equivalent AmericanHeartAssociationrecommendation TheAmericanHeartAssociationrecommendsthatpeoplewithoutdocumentedcoronaryheartdisease(CHD)eatavarietyoffish(preferablyoily)atleasttwiceweekly(230).Twoservingsofoilyfishprovideapproximately500mgofEPAplusDHA.Pregnantwomenandchildrenshouldavoidfishthattypicallyhavehigherlevelsofmethylmercury(seeContaminantsinfish).PeoplewithdocumentedCHDandthosewithheartfailurewithoutpreservedleftventricularfunctionareadvisedtoconsumeapproximately1g/dayofEPA+DHApreferablyfromoilyfish,ortoconsiderEPA+DHAsupplementsinconsultationwithaphysician(104,107).Patientswhoneedtolowerserumtriglyceridesmaytake2to4g/dayofEPA+DHAsupplementsunderaphysician'scare(seeHypertriglyceridemia). Internationalrecommendations UponrequestoftheEuropeanCommission,theEuropeanFoodSafetyAuthority(EFSA)proposedadequateintakes(AI)fortheessentialfattyacidsLAandALA,aswellasthelong-chainomega-3fattyacidsEPAandDHA(231).EFSArecommendsanLAintakeof4%oftotalenergyandanALAintakeof0.5%oftotalenergy;anAIof250mg/dayisrecommendedforEPAplusDHA(232).TheEuropeanFoodandSafetyAuthority(EFSA)recommendsthatpregnantandlactatingwomenconsumeanadditional100to200mgofpreformedDHAontopofthe250mg/dayEPAplusDHArecommendedforhealthyadults(231). Foradults,theWorldHealthOrganizationrecommendsanacceptablemacronutrientdistributionrange(AMDR)foromega-6fattyacidintakeof2.5%-9%ofenergyandforomega-3fattyacidintakeof0.5%-2%ofenergy(233).TheirAMDRforEPAplusDHAis0.25to2g/day(theupperlevelapplyingtosecondarypreventionofcoronaryheartdisease). TheInternationalSocietyfortheStudyofFattyAcidsandLipids(ISSFAL)recommendshealthyadultshaveanLAintakeof2%energy,anALAintakeof0.7%energy,andaminimumof500mg/dayofEPAplusDHAforcardiovascularhealth(234). LinusPaulingInstituterecommendation TheLinusPaulingInstitutesupportstheAIfortheessentialfattyacids(seeTables6and7) and recommendsthatgenerallyhealthyadultsincrease theirintakeoflong-chainomega-3fattyacidsbyeatingfishtwiceweeklyandconsumingfoodsrichinALA,suchaswalnuts,flaxseeds,andflaxseedorcanolaoil. Ifyoudon'tregularlyconsumefish,considertakingatwo-gramfishoilsupplementseveraltimesaweek.Ifyouarepronetobleedingortakeanticoagulantdrugs,consultyourphysician. AuthorsandReviewers Originallywrittenin2003by: JaneHigdon,Ph.D. LinusPaulingInstitute OregonStateUniversity UpdatedinDecember2005by: JaneHigdon,Ph.D. LinusPaulingInstitute OregonStateUniversity UpdatedinApril2009by: VictoriaJ.Drake,Ph.D. LinusPaulingInstitute OregonStateUniversity UpdatedinApril2014by: GianaAngelo,Ph.D. LinusPaulingInstitute OregonStateUniversity UpdatedinMay2019by: BarbaraDelage,Ph.D. LinusPaulingInstitute OregonStateUniversity ReviewedinJune2019by: DonaldB.Jump,Ph.D. Professor,SchoolofBiologicalandPopulationHealthSciences PrincipalInvestigator,LinusPaulingInstitute OregonStateUniversity Copyright2003-2022 LinusPaulingInstitute References 1. FoodandNutritionBoard,InstituteofMedicine.DietaryFats:TotalFatandFattyAcids.DietaryReferenceIntakesforEnergy,Carbohydrate,Fiber,Fat,FattyAcids,Cholesterol,Protein,andAminoAcids.Washington,D.C.:NationalAcademiesPress;2002:422-541. (TheNationalAcademiesPress) 2. LichtensteinA,JonesPJ.Lipids:AbsorptionandTransport.In:ErdmanJWJ,MacdonaldIA,ZeiselSH,eds.PresentKnowledgeinNutrition.10thed:ILSIWiley-Blackwell;2012:118-131. 3. DavidsonMH.Omega-3fattyacids:newinsightsintothepharmacologyandbiologyofdocosahexaenoicacid,docosapentaenoicacid,andeicosapentaenoicacid.CurrOpinLipidol.2013;24(6):467-474. (PubMed) 4. NakamuraMT,NaraTY.Structure,function,anddietaryregulationofdelta6, delta5,and delta9desaturases.AnnuRevNutr.2004;24:345-376. (PubMed) 5. JumpDB,DepnerCM,TripathyS.Omega-3fattyacidsupplementationandcardiovasculardisease.JLipidRes.2012;53(12):2525-2545. (PubMed) 6. BurdgeGC,JonesAE,WoottonSA.Eicosapentaenoicanddocosapentaenoicacidsaretheprincipalproductsofα-linolenicacidmetabolisminyoungmen.BrJNutr.2002;88(4):355-364. (PubMed) 7. BurdgeGC,WoottonSA.Conversionofα-linolenicacidtoeicosapentaenoic,docosapentaenoicanddocosahexaenoicacidsinyoungwomen.BrJNutr.2002;88(4):411-420. (PubMed) 8. BurdgeG.α-Linolenicacidmetabolisminmenandwomen:nutritionalandbiologicalimplications.CurrOpinClinNutrMetabCare.2004;7(2):137-144. (PubMed) 9. GiltayEJ,GoorenLJ,TooriansAW,KatanMB,ZockPL.Docosahexaenoicacidconcentrationsarehigherinwomenthaninmenbecauseofestrogeniceffects.AmJClinNutr.2004;80(5):1167-1174. (PubMed) 10. TosiF,SartoriF,GuariniP,OlivieriO,MartinelliN.Delta-5anddelta-6desaturases:crucialenzymesinpolyunsaturatedfattyacid-relatedpathwayswithpleiotropicinfluencesinhealthanddisease.AdvExpMedBiol.2014;824:61-81. (PubMed) 11. AmeurA,EnrothS,JohanssonA,etal.Geneticadaptationoffatty-acidmetabolism:ahuman-specifichaplotypeincreasingthebiosynthesisoflong-chainomega-3andomega-6fattyacids.AmJHumGenet.2012;90(5):809-820. (PubMed) 12. BrossardN,CrosetM,PachiaudiC,RiouJP,TayotJL,LagardeM.Retroconversionandmetabolismof[13C]22:6n-3inhumansandratsafterintakeofasingledoseof[13C]22:6n-3-triacylglycerols.AmJClinNutr.1996;64(4):577-586. (PubMed) 13. ConquerJA,HolubBJ.Dietarydocosahexaenoicacidasasourceofeicosapentaenoicacidinvegetariansandomnivores.Lipids.1997;32(3):341-345. (PubMed) 14. JumpDB,TripathyS,DepnerCM.Fattyacid-regulatedtranscriptionfactorsintheliver.AnnRevNutr.2013;33:249-269. (PubMed) 15. StillwellW,WassallSR.Docosahexaenoicacid:membranepropertiesofauniquefattyacid.ChemPhysLipids.2003;126(1):1-27. (PubMed) 16. CalderPC.n-3fattyacids,inflammationandimmunity:newmechanismstoexplainoldactions.ProcNutrSoc.2013;72(3):326-336. (PubMed) 17. CalderPC.Polyunsaturatedfattyacidsandinflammatoryprocesses:Newtwistsinanoldtale.Biochimie.2009;91(6):791-795. (PubMed) 18. HarrisWS,SandsSA,WindsorSL,etal.Omega-3fattyacidsincardiacbiopsiesfromhearttransplantationpatients:correlationwitherythrocytesandresponsetosupplementation.Circulation.2004;110(12):1645-1649. (PubMed) 19. JumpDB.Thebiochemistryofn-3polyunsaturatedfattyacids.JBiolChem.2002;277(11):8755-8758. (PubMed) 20. JeffreyBG,WeisingerbHS,NeuringerM,MitcheliDC.Theroleofdocosahexaenoicacidinretinalfunction.Lipids.2001;36(9):859-871. (PubMed) 21. SanGiovanniJP,ChewEY.Theroleofomega-3long-chainpolyunsaturatedfattyacidsinhealthanddiseaseoftheretina.ProgRetinEyeRes.2005;24(1):87-138. (PubMed) 22. InnisSM.Dietaryomega3fattyacidsandthedevelopingbrain.BrainRes.2008;1237:35-43. (PubMed) 23. YuN,MartinJL,StellaN,MagistrettiPJ.Arachidonicacidstimulatesglucoseuptakeincerebralcorticalastrocytes.ProcNatlAcadSciUSA.1993;90(9):4042-4046. (PubMed) 24. DasUN,Fams.Long-chainpolyunsaturatedfattyacidsinthegrowthanddevelopmentofthebrainandmemory.Nutrition.2003;19(1):62-65. (PubMed) 25. DasUN.Autismasadisorderofdeficiencyofbrain-derivedneurotrophicfactorandalteredmetabolismofpolyunsaturatedfattyacids.Nutrition.2013;29(10):1175-1185. (PubMed) 26. AmericanOilChemists'Society.TheAOCSLipidLibrary.August15,2012.Availableat:http://lipidlibrary.aocs.org/.Accessed2/25/14. 27. FlockMR,HarrisWS,Kris-EthertonPM.Long-chainomega-3fattyacids:timetoestablishadietaryreferenceintake.NutrRev.2013;71(10):692-707. (PubMed) 28. SerhanCN,ChiangN.Resolutionphaselipidmediatorsofinflammation:agonistsofresolution.CurrOpinPharmacol.2013;13(4):632-640. (PubMed) 29. BannenbergG,SerhanCN.Specializedpro-resolvinglipidmediatorsintheinflammatoryresponse:Anupdate.BiochimBiophysActa.2010;1801(12):1260-1273. (PubMed) 30. NicolaouA,MauroC,UrquhartP,Marelli-BergF.PolyunsaturatedFattyAcid-DerivedLipidMediatorsandTCellFunction.FrontImmunol.2014;5:75. (PubMed) 31. PricePT,NelsonCM,ClarkeSD.Omega-3polyunsaturatedfattyacidregulationofgeneexpression.CurrOpinLipidol.2000;11(1):3-7. (PubMed) 32. CalderPC.Dietarymodificationofinflammationwithlipids.ProcNutrSoc.2002;61(3):345-358. (PubMed) 33. SampathH,NtambiJM.Polyunsaturatedfattyacidregulationofgeneexpression.NutrRev.2004;62(9):333-339. (PubMed) 34. ShaikhSR.BiophysicalandbiochemicalmechanismsbywhichdietaryN-3polyunsaturatedfattyacidsfromfishoildisruptmembranelipidrafts.JNutrBiochem.2012;23(2):101-105. (PubMed) 35. JeppesenPB,HoyCE,MortensenPB.Essentialfattyaciddeficiencyinpatientsreceivinghomeparenteralnutrition.AmJClinNutr.1998;68(1):126-133. (PubMed) 36. SmitEN,MuskietFA,BoersmaER.Thepossibleroleofessentialfattyacidsinthepathophysiologyofmalnutrition:areview.ProstaglandinsLeukotEssentFattyAcids.2004;71(4):241-250. (PubMed) 37. MascioliEA,LopesSM,ChampagneC,DriscollDF.Essentialfattyaciddeficiencyandhometotalparenteralnutritionpatients.Nutrition.1996;12(4):245-249. (PubMed) 38. SteginkLD,FreemanJB,WispeJ,ConnorWE.Absenceofthebiochemicalsymptomsofessentialfattyaciddeficiencyinsurgicalpatientsundergoingproteinsparingtherapy.AmJClinNutr.1977;30(3):388-393. (PubMed) 39. JeppesenPB,HoyCE,MortensenPB.Deficienciesofessentialfattyacids,vitaminAandEandchangesinplasmalipoproteinsinpatientswithreducedfatabsorptionorintestinalfailure.EurJClinNutr.2000;54(8):632-642. (PubMed) 40. LepageG,LevyE,RoncoN,SmithL,GaleanoN,RoyCC.Directtransesterificationofplasmafattyacidsforthediagnosisofessentialfattyaciddeficiencyincysticfibrosis.JLipidRes.1989;30(10):1483-1490. (PubMed) 41. HolmanRT,JohnsonSB,HatchTF.Acaseofhumanlinolenicaciddeficiencyinvolvingneurologicalabnormalities.AmJClinNutr.1982;35(3):617-623. (PubMed) 42. FedorovaI,HusseinN,BaumannMH,DiMartinoC,SalemN,Jr.Ann-3fattyaciddeficiencyimpairsratspatiallearningintheBarnesmaze.BehavNeurosci.2009;123(1):196-205. (PubMed) 43. FedorovaI,SalemN,Jr.Omega-3fattyacidsandrodentbehavior.ProstaglandinsLeukotEssentFattyAcids.2006;75(4-5):271-289. (PubMed) 44. HarrisWS,VonSchackyC.Theomega-3index:anewriskfactorfordeathfromcoronaryheartdisease?PrevMed.2004;39(1):212-220. (PubMed) 45. MetcalfRG,JamesMJ,GibsonRA,etal.Effectsoffish-oilsupplementationonmyocardialfattyacidsinhumans.AmJClinNutr.2007;85(5):1222-1228. (PubMed) 46. OwenAJ,Peter-PrzyborowskaBA,HoyAJ,McLennanPL.Dietaryfishoildose-andtime-responseeffectsoncardiacphospholipidfattyacidcomposition.Lipids.2004;39(10):955-961. (PubMed) 47. vonSchackyC.Omega-3indexandcardiovascularhealth.Nutrients.2014;6(2):799-814. (PubMed) 48. HarrisWS.Theomega-3indexasariskfactorforcoronaryheartdisease.AmJClinNutr.2008;87(6):1997S-2002S. (PubMed) 49. FlockMR,Skulas-RayAC,HarrisWS,EthertonTD,FlemingJA,Kris-EthertonPM.Determinantsoferythrocyteomega-3fattyacidcontentinresponsetofishoilsupplementation:adose-responserandomizedcontrolledtrial.JAmHeartAssoc.2013;2(6):e000513. (PubMed) 50. HarrisWS,PottalaJV,VarvelSA,BorowskiJJ,WardJN,McConnellJP.Erythrocyteomega-3fattyacidsincreaseandlinoleicaciddecreaseswithage:observationsfrom160,000patients.ProstaglandinsLeukotEssentFattyAcids.2013;88(4):257-263. (PubMed) 51. OlsenSF,SorensenJD,SecherNJ,etal.Randomisedcontrolledtrialofeffectoffish-oilsupplementationonpregnancyduration.Lancet.1992;339(8800):1003-1007. (PubMed) 52. OnwudeJL,LilfordRJ,HjartardottirH,StainesA,TuffnellD.Arandomiseddoubleblindplacebocontrolledtrialoffishoilinhighriskpregnancy.BrJObstetGynaecol.1995;102(2):95-100. (PubMed) 53. SmutsCM,HuangM,MundyD,PlasseT,MajorS,CarlsonSE.Arandomizedtrialofdocosahexaenoicacidsupplementationduringthethirdtrimesterofpregnancy.ObstetGynecol.2003;101(3):469-479. (PubMed) 54. ZhouSJ,YellandL,McPheeAJ,QuinlivanJ,GibsonRA,MakridesM.Fish-oilsupplementationinpregnancydoesnotreducetheriskofgestationaldiabetesorpreeclampsia.AmJClinNutr.2012;95(6):1378-1384. (PubMed) 55. SzajewskaH,HorvathA,KoletzkoB.Effectofn-3long-chainpolyunsaturatedfattyacidsupplementationofwomenwithlow-riskpregnanciesonpregnancyoutcomesandgrowthmeasuresatbirth:ameta-analysisofrandomizedcontrolledtrials.AmJClinNutr.2006;83(6):1337-1344. (PubMed) 56. HorvathA,KoletzkoB,SzajewskaH.Effectofsupplementationofwomeninhigh-riskpregnancieswithlong-chainpolyunsaturatedfattyacidsonpregnancyoutcomesandgrowthmeasuresatbirth:ameta-analysisofrandomizedcontrolledtrials.BrJNutr.2007;98(2):253-259. (PubMed) 57. MakridesM,GibsonRA,McPheeAJ,YellandL,QuinlivanJ,RyanP.EffectofDHAsupplementationduringpregnancyonmaternaldepressionandneurodevelopmentofyoungchildren:arandomizedcontrolledtrial.JAMA.2010;304(15):1675-1683. (PubMed) 58. KarS,WongM,RogozinskaE,ThangaratinamS.Effectsofomega-3fattyacidsinpreventionofearlypretermdelivery:asystematicreviewandmeta-analysisofrandomizedstudies.EurJObstetGynecolReprodBiol.2016;198:40-46. (PubMed) 59. CarlsonSE,GajewskiBJ,AlhayekS,ColomboJ,KerlingEH,GustafsonKM.Dose-responserelationshipbetweendocosahexaenoicacid(DHA)intakeandlowerratesofearlypretermbirth,lowbirthweightandverylowbirthweight.ProstaglandinsLeukotEssentFattyAcids.2018;138:1-5. (PubMed) 60. SacconeG,BerghellaV,MaruottiGM,SarnoL,MartinelliP.Omega-3supplementationduringpregnancytopreventrecurrentintrauterinegrowthrestriction:systematicreviewandmeta-analysisofrandomizedcontrolledtrials.UltrasoundObstetGynecol.2015;46(6):659-664. (PubMed) 61. SacconeG,BerghellaV.Omega-3supplementationtopreventrecurrentpretermbirth:asystematicreviewandmetaanalysisofrandomizedcontrolledtrials.AmJObstetGynecol.2015;213(2):135-140. (PubMed) 62. GouldJF,SmithersLG,MakridesM.Theeffectofmaternalomega-3(n-3)LCPUFAsupplementationduringpregnancyonearlychildhoodcognitiveandvisualdevelopment:asystematicreviewandmeta-analysisofrandomizedcontrolledtrials.AmJClinNutr.2013;97(3):531-544. (PubMed) 63. GouldJF,TreyvaudK,YellandLN,etal.Doesn-3LCPUFAsupplementationduringpregnancyincreasetheIQofchildrenatschoolage?Follow-upofarandomisedcontrolledtrial.BMJOpen.2016;6(5):e011465. (PubMed) 64. MuhlhauslerBS,YellandLN,McDermottR,etal.DHAsupplementationduringpregnancydoesnotreduceBMIorbodyfatmassinchildren:follow-upoftheDHAtoOptimizeMotherInfantOutcomerandomizedcontrolledtrial.AmJClinNutr.2016;103(6):1489-1496. (PubMed) 65. WoodK,MantziorisE,LingwoodB,etal.TheeffectofmaternalDHAsupplementationonbodyfatmassinchildrenat7years:follow-upoftheDOMInOrandomizedcontrolledtrial.ProstaglandinsLeukotEssentFattyAcids.2018;139:49-54. (PubMed) 66. VahdaniniaM,MackenzieH,DeanT,HelpsS.Theeffectivenessofomega-3polyunsaturatedfattyacidinterventionsduringpregnancyonobesitymeasuresintheoffspring:anup-to-datesystematicreviewandmeta-analysis.EurJNutr.2018;doi:10.1007/s00394-018-1824-9.[Epubaheadofprint]. (PubMed) 67. LinJ,ZhangY,ZhuX,WangD,DaiJ.Effectsofsupplementationwithomega-3fattyacidsduringpregnancyonasthmaorwheezeofchildren:asystematicreviewandmeta-analysis.JMaternFetalNeonatalMed.2018:1-10. (PubMed) 68. VahdaniniaM,MackenzieH,DeanT,HelpsS.Omega-3LCPUFAsupplementationduringpregnancyandriskofallergicoutcomesorsensitizationinoffspring:Asystematicreviewandmeta-analysis.AnnAllergyAsthmaImmunol.2019;122(3):302-313.e302. (PubMed) 69. Delgado-NogueraMF,CalvacheJA,BonfillCospX,KotanidouEP,Galli-TsinopoulouA.Supplementationwithlongchainpolyunsaturatedfattyacids(LCPUFA)tobreastfeedingmothersforimprovingchildgrowthanddevelopment.CochraneDatabaseSystRev.2015(7):Cd007901. (PubMed) 70. GuesnetP,AlessandriJM.Docosahexaenoicacid(DHA)andthedevelopingcentralnervoussystem(CNS)-Implicationsfordietaryrecommendations.Biochimie.2011;93(1):7-12. (PubMed) 71. GibsonRA,KneeboneGM.Fattyacidcompositionofhumancolostrumandmaturebreastmilk.AmJClinNutr.1981;34(2):252-257. (PubMed) 72. LarqueE,DemmelmairH,KoletzkoB.Perinatalsupplyandmetabolismoflong-chainpolyunsaturatedfattyacids:importancefortheearlydevelopmentofthenervoussystem.AnnNYAcadSci.2002;967:299-310. (PubMed) 73. QawasmiA,Landeros-WeisenbergerA,LeckmanJF,BlochMH.Meta-analysisoflong-chainpolyunsaturatedfattyacidsupplementationofformulaandinfantcognition.Pediatrics.2012;129(6):1141-1149. (PubMed) 74. QawasmiA,Landeros-WeisenbergerA,BlochMH.Meta-analysisofLCPUFAsupplementationofinfantformulaandvisualacuity.Pediatrics.2013;131(1):e262-272. (PubMed) 75. MakridesM,GibsonRA,McPheeAJ,etal.Neurodevelopmentaloutcomesofpreterminfantsfedhigh-dosedocosahexaenoicacid:arandomizedcontrolledtrial.JAMA.2009;301(2):175-182. (PubMed) 76. CollinsCT,GibsonRA,AndersonPJ,etal.Neurodevelopmentaloutcomesat7years'correctedageinpreterminfantswhowerefedhigh-dosedocosahexaenoicacidtotermequivalent:afollow-upofarandomisedcontrolledtrial.BMJOpen.2015;5(3):e007314. (PubMed) 77. MoonK,RaoSC,SchulzkeSM,PatoleSK,SimmerK.Longchainpolyunsaturatedfattyacidsupplementationinpreterminfants.CochraneDatabaseSystRev.2016;12:Cd000375. (PubMed) 78. USDepartmentofAgriculture.AgriculturalResearchService.Nutrientintakesfromfood:meanamountsconsumedperindividual,bygenderandage.Availableat:www.ars.usda.gov/ba/bhnrc/fsrg.Accessed4/25/14. 79. FarvidMS,DingM,PanA,etal.Dietarylinoleicacidandriskofcoronaryheartdisease:asystematicreviewandmeta-analysisofprospectivecohortstudies.Circulation.2014;130(18):1568-1578. (PubMed) 80. MarklundM,WuJHY,ImamuraF,etal.Biomarkersofdietaryomega-6fattyacidsandincidentcardiovasculardiseaseandmortality:anindividual-levelpooledanalysisof30cohortstudies.Circulation.2019;139(21):2422-2436. (PubMed) 81. UKMedicalResearchCouncil.Controlledtrialofsoya-beanoilinmyocardialinfarction.Lancet.1968;2(7570):693-699. (PubMed) 82. DaytonS,PearceML,HashimotoS,DixonWJ,TomiyasuU.Acontrolledclinicaltrialofadiethighinunsaturatedfatinpreventingcomplicationsofatherosclerosis.Circulation.1969;40(1s2):II-1-II-63. 83. LerenP.TheOslodiet-heartstudy.Eleven-yearreport.Circulation.1970;42(5):935-942. (PubMed) 84. MiettinenM,TurpeinenO,KarvonenMJ,PekkarinenM,PaavilainenE,ElosuoR.Dietarypreventionofcoronaryheartdiseaseinwomen:theFinnishmentalhospitalstudy.IntJEpidemiol.1983;12(1):17-25. (PubMed) 85. TurpeinenO,KarvonenMJ,PekkarinenM,MiettinenM,ElosuoR,PaavilainenE.Dietarypreventionofcoronaryheartdisease:theFinnishMentalHospitalStudy.IntJEpidemiol.1979;8(2):99-118. (PubMed) 86. SacksFM,LichtensteinAH,WuJHY,etal.Dietaryfatsandcardiovasculardisease:apresidentialadvisoryfromtheAmericanHeartAssociation.Circulation.2017;136(3):e1-e23. (PubMed) 87. HooperL,Al-KhudairyL,AbdelhamidAS,etal.Omega-6fatsfortheprimaryandsecondarypreventionofcardiovasculardisease.CochraneDatabaseSystRev.2018;11:Cd011094. (PubMed) 88. HamleyS.Theeffectofreplacingsaturatedfatwithmostlyn-6polyunsaturatedfatoncoronaryheartdisease:ameta-analysisofrandomisedcontrolledtrials.NutrJ.2017;16(1):30. (PubMed) 89. MensinkRP,WorldHealthOrganization.Effectsofsaturatedfattyacidsonserumlipidsandlipoproteins:asystematicreviewandregressionanalysis.2016. 90. MensinkRP,KatanMB.Effectofdietaryfattyacidsonserumlipidsandlipoproteins.Ameta-analysisof27trials.ArteriosclerThromb.1992;12(8):911-919. (PubMed) 91. FernandezML,WestKL.Mechanismsbywhichdietaryfattyacidsmodulateplasmalipids.JNutr.2005;135(9):2075-2078. (PubMed) 92. RamsdenCE,ZamoraD,LeelarthaepinB,etal.Useofdietarylinoleicacidforsecondarypreventionofcoronaryheartdiseaseanddeath:evaluationofrecovereddatafromtheSydneyDietHeartStudyandupdatedmeta-analysis.BMJ.2013;346:e8707. (PubMed) 93. DelGobboLC,ImamuraF,AslibekyanS,etal.Omega-3polyunsaturatedfattyAcidbiomarkersandcoronaryheartdisease:poolingprojectof19cohortstudies.JAMAInternMed.2016;176(8):1155-1166. (PubMed) 94. WeiJ,HouR,XiY,etal.Theassociationanddose-responserelationshipbetweendietaryintakeofalpha-linolenicacidandriskofCHD:asystematicreviewandmeta-analysisofcohortstudies.BrJNutr.2018;119(1):83-89. (PubMed) 95. RimmEB,AppelLJ,ChiuveSE,etal.Seafoodlong-chainn-3polyunsaturatedfattyacidsandcardiovasculardisease:ascienceadvisoryfromtheAmericanHeartAssociation.Circulation.2018;138(1):e35-e47. (PubMed) 96. BechtholdA,BoeingH,SchwedhelmC,etal.Foodgroupsandriskofcoronaryheartdisease,strokeandheartfailure:Asystematicreviewanddose-responsemeta-analysisofprospectivestudies.CritRevFoodSciNutr.2017:1-20. (PubMed) 97. ZhaoW,TangH,YangX,etal.Fishconsumptionandstrokerisk:ameta-analysisofprospectivecohortstudies.JStrokeCerebrovascDis.2019;28(3):604-611. (PubMed) 98. JayediA,ZargarMS,Shab-BidarS.Fishconsumptionandriskofmyocardialinfarction:asystematicreviewanddose-responsemeta-analysissuggestsaregionaldifference.NutrRes.2019;62:1-12. (PubMed) 99. ZhaoLG,SunJW,YangY,MaX,WangYY,XiangYB.Fishconsumptionandall-causemortality:ameta-analysisofcohortstudies.EurJClinNutr.2016;70(2):155-161. (PubMed) 100. JayediA,Shab-BidarS,EimeriS,DjafarianK.Fishconsumptionandriskofall-causeandcardiovascularmortality:adose-responsemeta-analysisofprospectiveobservationalstudies.PublicHealthNutr.2018;21(7):1297-1306. (PubMed) 101. ChowdhuryR,StevensS,GormanD,etal.Associationbetweenfishconsumption,longchainomega3fattyacids,andriskofcerebrovasculardisease:systematicreviewandmeta-analysis.BMJ.2012;345:e6698. (PubMed) 102. MozaffarianD,AppelLJ,VanHornL.Componentsofacardioprotectivediet:newinsights.Circulation.2011;123(24):2870-2891. (PubMed) 103. AbdelhamidAS,BrownTJ,BrainardJS,etal.Omega-3fattyacidsfortheprimaryandsecondarypreventionofcardiovasculardisease.CochraneDatabaseSystRev.2018;11:Cd003177. (PubMed) 104. SiscovickDS,BarringerTA,FrettsAM,etal.Omega-3polyunsaturatedfattyacid(fishoil)supplementationandthepreventionofclinicalcardiovasculardisease:ascienceadvisoryfromtheAmericanHeartAssociation.Circulation.2017;135(15):e867-e884. (PubMed) 105. DiAngelantonioE,SarwarN,PerryP,etal.Majorlipids,apolipoproteins,andriskofvasculardisease.JAMA.2009;302(18):1993-2000. (PubMed) 106. BalkEM,LichtensteinAH,ChungM,KupelnickB,ChewP,LauJ.Effectsofomega-3fattyacidsonserummarkersofcardiovasculardiseaserisk:asystematicreview.Atherosclerosis.2006;189(1):19-30. (PubMed) 107. Kris-EthertonPM,HarrisWS,AppelLJ.Fishconsumption,fishoil,omega-3fattyacids,andcardiovasculardisease.Circulation.2002;106(21):2747-2757. (PubMed) 108. LeafA,XiaoYF,KangJX,BillmanGE.Preventionofsuddencardiacdeathbyn-3polyunsaturatedfattyacids.PharmacolTher. 2003;98(3):355-377. (PubMed) 109. MozaffarianD,WuJH.Omega-3fattyacidsandcardiovasculardisease:effectsonriskfactors,molecularpathways,andclinicalevents.JAmColCardiol.2011;58(20):2047-2067. (PubMed) 110. HowardBV.Lipoproteinmetabolismindiabetesmellitus.JLipidRes.1987;28(6):613-628. (PubMed) 111. KhavandiM,DuarteF,GinsbergHN,Reyes-SofferG.Treatmentofdyslipidemiastopreventcardiovasculardiseaseinpatientswithtype2diabetes.CurrCardiolRep.2017;19(1):7. (PubMed) 112. ScicaliR,DiPinoA,FerraraV,etal.Newtreatmentoptionsforlipid-loweringtherapyinsubjectswithtype2diabetes.ActaDiabetol.2018;55(3):209-218. (PubMed) 113. PatelA,MacMahonS,ChalmersJ,etal.Intensivebloodglucosecontrolandvascularoutcomesinpatientswithtype2diabetes.NEnglJMed.2008;358(24):2560-2572. (PubMed) 114. ZhengT,ZhaoJ,WangY,etal.Thelimitedeffectofomega-3polyunsaturatedfattyacidsoncardiovascularriskinpatientswithimpairedglucosemetabolism:ameta-analysis.ClinBiochem.2014;47(6):369-377. (PubMed) 115. KromhoutD,GiltayEJ,GeleijnseJM.n-3fattyacidsandcardiovasculareventsaftermyocardialinfarction.NewEnglJMed.2010;363(21):2015-2026. (PubMed) 116. BoschJ,GersteinHC,DagenaisGR,etal.n-3fattyacidsandcardiovascularoutcomesinpatientswithdysglycemia.NewEnglJMed.2012;367(4):309-318. (PubMed) 117. O'MahoneyLL,MatuJ,PriceOJ,etal.Omega-3polyunsaturatedfattyacidsfavourablymodulatecardiometabolicbiomarkersintype2diabetes:ameta-analysisandmeta-regressionofrandomizedcontrolledtrials.CardiovascDiabetol.2018;17(1):98. (PubMed) 118. FoxCS,GoldenSH,AndersonC,etal.Updateonpreventionofcardiovasculardiseaseinadultswithtype2diabetesmellitusinlightofrecentevidence:ascientificstatementfromtheAmericanHeartAssociationandtheAmericanDiabetesAssociation.DiabetesCare.2015;38(9):1777-1803. (PubMed) 119. AmericanDiabetesAssociation.Managementofdiabetesinpregnancy:standardsofmedicalcareindiabetes-2019.DiabetesCare.2019;42(Suppl1):S165-s172. (PubMed) 120. SamimiM,JamilianM,AsemiZ,EsmaillzadehA.Effectsofomega-3fattyacidsupplementationoninsulinmetabolismandlipidprofilesingestationaldiabetes:Randomized,double-blind,placebo-controlledtrial.ClinNutr.2015;34(3):388-393. (PubMed) 121. TaghizadehM,JamilianM,MazloomiM,SanamiM,AsemiZ.Arandomized-controlledclinicaltrialinvestigatingtheeffectofomega-3fattyacidsandvitaminEco-supplementationonmarkersofinsulinmetabolismandlipidprofilesingestationaldiabetes.JClinLipidol.2016;10(2):386-393. (PubMed) 122. JamilianM,SamimiM,EbrahimiFA,etal.TheeffectsofvitaminDandomega-3fattyacidco-supplementationonglycemiccontrolandlipidconcentrationsinpatientswithgestationaldiabetes.JClinLipidol.2017;11(2):459-468. (PubMed) 123. WandersAJ,BlomWAM,ZockPL,GeleijnseJM,BrouwerIA,AlssemaM.Plant-derivedpolyunsaturatedfattyacidsandmarkersofglucosemetabolismandinsulinresistance:ameta-analysisofrandomizedcontrolledfeedingtrials.BMJOpenDiabetesResCare.2019;7(1):e000585. (PubMed) 124. WuJHY,MarklundM,ImamuraF,etal.Omega-6fattyacidbiomarkersandincidenttype2diabetes:pooledanalysisofindividual-leveldatafor39740adultsfrom20prospectivecohortstudies.LancetDiabetesEndocrinol.2017;5(12):965-974. (PubMed) 125. HodsonL,SkeaffCM,FieldingBA.Fattyacidcompositionofadiposetissueandbloodinhumansanditsuseasabiomarkerofdietaryintake.ProgLipidRes.2008;47(5):348-380. (PubMed) 126. JangH,ParkK.Omega-3andomega-6polyunsaturatedfattyacidsandmetabolicsyndrome:Asystematicreviewandmeta-analysis.ClinNutr.2019;doi:10.1016/j.clnu.2019.03.032.[Epubaheadofprint]. (PubMed) 127. USCentersforDiseaseControlandPrevention(CDC).Alzheimer'sDisease.October1,2018.Availableat:https://www.cdc.gov/aging/aginginfo/alzheimers.htm.Accessed4/30/19. 128. MaccioniRB,MunozJP,BarbeitoL.ThemolecularbasesofAlzheimer'sdiseaseandotherneurodegenerativedisorders.ArchMedRes.2001;32(5):367-381. (PubMed) 129. SamieriC,MorrisMC,BennettDA,etal.Fishintake,geneticpredispositiontoAlzheimerdisease,anddeclineinglobalcognitionandmemoryin5cohortsofolderpersons.AmJEpidemiol.2018;187(5):933-940. (PubMed) 130. HuangTL,ZandiPP,TuckerKL,etal.BenefitsoffattyfishondementiariskarestrongerforthosewithoutAPOEepsilon4.Neurology.2005;65(9):1409-1414. (PubMed) 131. WhalleyLJ,DearyIJ,StarrJM,etal.n-3Fattyaciderythrocytemembranecontent,APOEvarepsilon4,andcognitivevariation:anobservationalfollow-upstudyinlateadulthood.AmJClinNutr.2008;87(2):449-454. (PubMed) 132. CorderEH,SaundersAM,StrittmatterWJ,etal.GenedoseofapolipoproteinEtype4alleleandtheriskofAlzheimer'sdiseaseinlateonsetfamilies.Science.1993;261(5123):921-923. (PubMed) 133. PlourdeM,VohlMC,VandalM,CoutureP,LemieuxS,CunnaneSC.Plasman-3fattyacidresponsetoann-3fattyacidsupplementismodulatedbyapoEepsilon4butnotbythecommonPPAR-alphaL162Vpolymorphisminmen.BrJNutr.2009;102(8):1121-1124. (PubMed) 134. Chouinard-WatkinsR,Rioux-PerreaultC,FortierM,etal.Disturbanceinuniformly13C-labelledDHAmetabolisminelderlyhumansubjectscarryingtheapoEepsilon4allele.BrJNutr.2013;110(10):1751-1759. (PubMed) 135. ZhangY,ChenJ,QiuJ,LiY,WangJ,JiaoJ.Intakesoffishandpolyunsaturatedfattyacidsandmild-to-severecognitiveimpairmentrisks:adose-responsemeta-analysisof21cohortstudies.AmJClinNutr.2016;103(2):330-340. (PubMed) 136. D'AscoliTA,MursuJ,VoutilainenS,KauhanenJ,TuomainenTP,VirtanenJK.Associationbetweenserumlong-chainomega-3polyunsaturatedfattyacidsandcognitiveperformanceinelderlymenandwomen:TheKuopioIschaemicHeartDiseaseRiskFactorStudy.EurJClinNutr.2016;70(8):970-975. (PubMed) 137. vanderLeeSJ,TeunissenCE,PoolR,etal.Circulatingmetabolitesandgeneralcognitiveabilityanddementia:Evidencefrom11cohortstudies.AlzheimersDement.2018;14(6):707-722. (PubMed) 138. FotuhiM,MohasselP,YaffeK.Fishconsumption,long-chainomega-3fattyacidsandriskofcognitivedeclineorAlzheimerdisease:acomplexassociation.NatClinPractNeurol.2009;5(3):140-152. (PubMed) 139. SydenhamE,DangourAD,LimWS.Omega3fattyacidforthepreventionofcognitivedeclineanddementia.CochraneDatabaseSystRev.2012(6):Cd005379. (PubMed) 140. Rangel-HuertaOD,GilA.Effectofomega-3fattyacidsoncognition:anupdatedsystematicreviewofrandomizedclinicaltrials.NutrRev.2018;76(1):1-20. (PubMed) 141. JacksonPA,ForsterJS,BellJG,DickJR,YoungerI,KennedyDO.DHAsupplementationaloneorincombinationwithothernutrientsdoesnotmodulatecerebralhemodynamicsorcognitivefunctioninhealthyolderadults.Nutrients.2016;8(2):86. (PubMed) 142. KobeT,WitteAV,SchnelleA,etal.Combinedomega-3fattyacids,aerobicexerciseandcognitivestimulationpreventsdeclineingraymattervolumeofthefrontal,parietalandcingulatecortexinpatientswithmildcognitiveimpairment.Neuroimage.2016;131:226-238. (PubMed) 143. MillerM,StoneNJ,BallantyneC,etal.Triglyceridesandcardiovasculardisease:ascientificstatementfromtheAmericanHeartAssociation.Circulation.2011;123(20):2292-2333. (PubMed) 144. BenesLB,BassiNS,DavidsonMH.Omega-3carboxylicacidsmonotherapyandcombinationwithstatinsinthemanagementofdyslipidemia.VascHealthRiskManag.2016;12:481-490. (PubMed) 145. KasteleinJJ,MakiKC,SusekovA,etal.Omega-3freefattyacidsforthetreatmentofseverehypertriglyceridemia:theEpanoVafOrLoweringVeryhightriglyceridEs(EVOLVE)trial.JClinLipidol.2014;8(1):94-106. (PubMed) 146. MakiKC,OrloffDG,NichollsSJ,etal.Ahighlybioavailableomega-3freefattyacidformulationimprovesthecardiovascularriskprofileinhigh-risk,statin-treatedpatientswithresidualhypertriglyceridemia(theESPRITtrial).ClinTher.2013;35(9):1400-1411.e1401-1403. (PubMed) 147. NichollsSJ,Brandrup-WognsenG,PalmerM,BarterPJ.Meta-analysisofcomparativeefficacyofincreasingdoseofatorvastatinversusrosuvastatinversussimvastatinonloweringlevelsofatherogeniclipids(fromVOYAGER).AmJCardiol.2010;105(1):69-76. (PubMed) 148. BallantyneCM,BaysHE,KasteleinJJ,etal.Efficacyandsafetyofeicosapentaenoicacidethylester(AMR101)therapyinstatin-treatedpatientswithpersistenthightriglycerides(fromtheANCHORstudy).AmJCardiol.2012;110(7):984-992. (PubMed) 149. BaysHE,McKenneyJ,MakiKC,DoyleRT,CarterRN,SteinE.Effectsofprescriptionomega-3-acidethylestersonnon--high-densitylipoproteincholesterolwhencoadministeredwithescalatingdosesofatorvastatin.MayoClinProc.2010;85(2):122-128. (PubMed) 150. DavidsonMH,SteinEA,BaysHE,etal.Efficacyandtolerabilityofaddingprescriptionomega-3fattyacids4g/dtosimvastatin40mg/dinhypertriglyceridemicpatients:an8-week,randomized,double-blind,placebo-controlledstudy.ClinTher.2007;29(7):1354-1367. (PubMed) 151. ClinicalTrials.gov.OutcomesstudytoassessstatinresidualriskreductionwithEpanovainhighCVriskpatientswithhypertriglyceridemia(STRENGTH).Availableat:https://clinicaltrials.gov/ct2/show/NCT02104817.Accessed5/24/19. 152. MichelottiGA,MachadoMV,DiehlAM.NAFLD,NASHandlivercancer.NatRevGastroenterolHepatol.2013;10(11):656-665. (PubMed) 153. SpoonerMH,JumpDB.Omega-3fattyacidsandnonalcoholicfattyliverdiseaseinadultsandchildren:wheredowestand?CurrOpinClinNutrMetabCare.2019;22(2):103-110. (PubMed) 154. ArendtBM,ComelliEM,MaDW,etal.Alteredhepaticgeneexpressioninnonalcoholicfattyliverdiseaseisassociatedwithlowerhepaticn-3andn-6polyunsaturatedfattyacids.Hepatology.2015;61(5):1565-1578. (PubMed) 155. YanJH,GuanBJ,GaoHY,PengXE.Omega-3polyunsaturatedfattyacidsupplementationandnon-alcoholicfattyliverdisease:Ameta-analysisofrandomizedcontrolledtrials.Medicine(Baltimore).2018;97(37):e12271. (PubMed) 156. GioxariA,KalioraAC,MarantidouF,PanagiotakosDP.Intakeofomega-3polyunsaturatedfattyacidsinpatientswithrheumatoidarthritis:Asystematicreviewandmeta-analysis.Nutrition.2018;45:114-124.e114. (PubMed) 157. SenftleberNK,NielsenSM,AndersenJR,etal.Marineoilsupplementsforarthritispain:asystematicreviewandmeta-analysisofrandomizedtrials.Nutrients.2017;9(1). (PubMed) 158. AbdulrazaqM,InnesJK,CalderPC.Effectofomega-3polyunsaturatedfattyacidsonarthriticpain:Asystematicreview.Nutrition.2017;39-40:57-66. (PubMed) 159. LauCS,MorleyKD,BelchJJ.Effectsoffishoilsupplementationonnon-steroidalanti-inflammatorydrugrequirementinpatientswithmildrheumatoidarthritis--adouble-blindplacebocontrolledstudy.BrJRheumatol.1993;32(11):982-989. (PubMed) 160. SkoldstamL,BorjessonO,KjallmanA,SeivingB,AkessonB.Effectofsixmonthsoffishoilsupplementationinstablerheumatoidarthritis.Adouble-blind,controlledstudy.ScandJRheumatol.992;21(4):178-185. (PubMed) 161. SwanK,AllenPJ.Omega-3fattyacidforthetreatmentandremissionofCrohn'sdisease.JComplementIntegrMed.2013;10. (PubMed) 162. FeaganBG,SandbornWJ,MittmannU,etal.Omega-3freefattyacidsforthemaintenanceofremissioninCrohndisease:theEPICRandomizedControlledTrials.JAMA.2008;299(14):1690-1697. (PubMed) 163. CabreE,ManosaM,GassullMA.Omega-3fattyacidsandinflammatoryboweldiseases-asystematicreview.BrJNutr.2012;107Suppl2:S240-252. (PubMed) 164. Lev-TzionR,GriffithsAM,LederO,TurnerD.Omega3fattyacids(fishoil)formaintenanceofremissioninCrohn'sdisease.CochraneDatabaseSystRev.2014(2):Cd006320. (PubMed) 165. TurnerD,ShahPS,SteinhartAH,ZlotkinS,GriffithsAM.Maintenanceofremissionininflammatoryboweldiseaseusingomega-3fattyacids(fishoil):asystematicreviewandmeta-analyses.InflammBowelDis.2011;17(1):336-345. (PubMed) 166. HodgeL,SalomeCM,HughesJM,etal.Effectofdietaryintakeofomega-3andomega-6fattyacidsonseverityofasthmainchildren.EurRespirJ.1998;11(2):361-365. (PubMed) 167. OkamotoM,MitsunobuF,AshidaK,etal.Effectsofdietarysupplementationwithn-3fattyacidscomparedwithn-6fattyacidsonbronchialasthma.InternMed.2000;39(2):107-111. (PubMed) 168. WongKW.Clinicalefficacyofn-3fattyacidsupplementationinpatientswithasthma.JAmDietAssoc.2005;105(1):98-105. (PubMed) 169. SchachterHM,ReismanJ,TranK,etal.Healtheffectsofomega-3fattyacidsonasthma.EvidRepTechnolAssess(Summ).2004(91):1-7. (PubMed) 170. WoodsRK,ThienFC,AbramsonMJ.Dietarymarinefattyacids(fishoil)forasthmainadultsandchildren.CochraneDatabaseSystRev.2002(3):CD001283. (PubMed) 171. ReismanJ,SchachterHM,DalesRE,etal.Treatingasthmawithomega-3fattyacids:whereistheevidence?Asystematicreview.BMCComplementAlternMed.2006;6:26. (PubMed) 172. DonadioJV,GrandeJP.IgAnephropathy.NEnglJMed.2002;347(10):738-748. (PubMed) 173. LiuLL,WangLN.Omega-3fattyacidstherapyforIgAnephropathy:ameta-analysisofrandomizedcontrolledtrials.ClinNephrol.2012;77(2):119-125. (PubMed) 174. HirahashiJ.Omega-3polyunsaturatedfattyacidsforthetreatmentofIgAnephropathy.JClinMed.2017;6(7). (PubMed) 175. BrigandiSA,ShaoH,QianSY,ShenY,WuBL,KangJX.Autisticchildrenexhibitdecreasedlevelsofessentialfattyacidsinredbloodcells.IntJMolSci.2015;16(5):10061-10076. (PubMed) 176. MazaheryH,StonehouseW,DelshadM,etal.Relationshipbetweenlongchainn-3polyunsaturatedfattyacidsandautismspectrumdisorder:systematicreviewandmeta-analysisofcase-controlandrandomisedcontrolledtrials.Nutrients.2017;9(2). (PubMed) 177. YuiK,KoshibaM,NakamuraS,KobayashimY,OhnishiM.Efficacyofaddinglargedosesofarachidonicacidtodocosahexaenoicacidagainstrestrictedrepetitivebehaviorsinindividualswithautismspectrumdisorders: aplacebo-controlledtrial.JAddictResTher.2011;S4(006). 178. AmmingerGP,BergerGE,SchaferMR,KlierC,FriedrichMH,FeuchtM.Omega-3fattyacidssupplementationinchildrenwithautism:adouble-blindrandomized,placebo-controlledpilotstudy.BiolPsychiatry.2007;61(4):551-553. (PubMed) 179. BentS,BertoglioK,AshwoodP,BostromA,HendrenRL.Apilotrandomizedcontrolledtrialofomega-3fattyacidsforautismspectrumdisorder.JAutismDevDisord.2011;41(5):545-554. (PubMed) 180. BentS,HendrenRL,ZandiT,etal.Internet-based,randomized,controlledtrialofomega-3fattyacidsforhyperactivityinautism.JAmAcadChildAdolescPsychiatry.2014;53(6):658-666. (PubMed) 181. MankadD,DupuisA,SmileS,etal.Arandomized,placebocontrolledtrialofomega-3fattyacidsinthetreatmentofyoungchildrenwithautism.MolAutism.2015;6:18. (PubMed) 182. VoigtRG,MellonMW,KatusicSK,etal.Dietarydocosahexaenoicacidsupplementationinchildrenwithautism.JPediatrGastroenterolNutr.2014;58(6):715-722. (PubMed) 183. ChengYS,TsengPT,ChenYW,etal.Supplementationofomega3fattyacidsmayimprovehyperactivity,lethargy,andstereotypyinchildrenwithautismspectrumdisorders:ameta-analysisofrandomizedcontrolledtrials.NeuropsychiatrDisTreat.2017;13:2531-2543. (PubMed) 184. HorvathA,LukasikJ,SzajewskaH.Omega-3fattyacidsupplementationdoesnotaffectautismspectrumdisorderinchildren:asystematicreviewandmeta-analysis.JNutr.2017;147(3):367-376. (PubMed) 185. HibbelnJR.Fishconsumptionandmajordepression.Lancet.1998;351(9110):1213. (PubMed) 186. NoaghiulS,HibbelnJR.Cross-nationalcomparisonsofseafoodconsumptionandratesofbipolardisorders.AmJPsychiatry.2003;160(12):2222-2227. (PubMed) 187. MaesM,ChristopheA,DelangheJ,AltamuraC,NeelsH,MeltzerHY.Loweredomega3polyunsaturatedfattyacidsinserumphospholipidsandcholesterylestersofdepressedpatients.PsychiatryRes.1999;85(3):275-291. (PubMed) 188. PeetM,MurphyB,ShayJ,HorrobinD.Depletionofomega-3fattyacidlevelsinredbloodcellmembranesofdepressivepatients.BiolPsychiatry.1998;43(5):315-319. (PubMed) 189. TiemeierH,vanTuijlHR,HofmanA,KiliaanAJ,BretelerMM.Plasmafattyacidcompositionanddepressionareassociatedintheelderly:theRotterdamStudy.AmJClinNutr.2003;78(1):40-46. (PubMed) 190. MamalakisG,TornaritisM,KafatosA.Depressionandadiposeessentialpolyunsaturatedfattyacids.ProstaglandinsLeukotEssentFattyAcids.2002;67(5):311-318. (PubMed) 191. LockeCA,StollAL.Omega-3fattyacidsinmajordepression.WorldRevNutrDiet.2001;89:173-185. (PubMed) 192. OrtegaRM,Rodriguez-RodriguezE,Lopez-SobalerAM.Effectsofomega3fattyacidssupplementationinbehaviorandnon-neurodegenerativeneuropsychiatricdisorders.BrJNutr.2012;107Suppl2:S261-270. (PubMed) 193. PriorPL,GaldurozJC.(N-3)Fattyacids:molecularroleandclinicalusesinpsychiatricdisorders.AdvNutr.2012;3(3):257-265. (PubMed) 194. GrossoG,PajakA,MarventanoS,etal.Roleofomega-3fattyacidsinthetreatmentofdepressivedisorders:acomprehensivemeta-analysisofrandomizedclinicaltrials.PLoSOne.2014;9(5):e96905. (PubMed) 195. AppletonKM,SallisHM,PerryR,NessAR,ChurchillR.Omega-3fattyacidsformajordepressivedisorderinadults:anabridgedCochranereview.BMJOpen.2016;6(3):e010172. (PubMed) 196. McNamaraRK,WelgeJA.Meta-analysisoferythrocytepolyunsaturatedfattyacidbiostatusinbipolardisorder.BipolarDisord.2016;18(3):300-306. (PubMed) 197. ShakeriJ,KhanegiM,GolshaniS,etal.Effectsofomega-3supplementinthetreatmentofpatientswithbipolarIdisorder.IntJPrevMed.2016;7:77. (PubMed) 198. HoenWP,LijmerJG,DuranM,WandersRJ,vanBeverenNJ,deHaanL.Redbloodcellpolyunsaturatedfattyacidsmeasuredinredbloodcellsandschizophrenia:ameta-analysis.PsychiatryRes.2013;207(1-2):1-12. (PubMed) 199. AkterK,GalloDA,MartinSA,etal.Areviewofthepossibleroleoftheessentialfattyacidsandfishoilsintheaetiology,preventionorpharmacotherapyofschizophrenia.JClinPharmTher.2012;37(2):132-139. (PubMed) 200. RobinsonDG,GallegoJA,JohnM,etal.Apotentialroleforadjunctiveomega-3polyunsaturatedfattyacidsfordepressionandanxietysymptomsinrecentonsetpsychosis:Resultsfroma16weekrandomizedplacebo-controlledtrialforparticipantsconcurrentlytreatedwithrisperidone.SchizophrRes.2019;204:295-303. (PubMed) 201. BurckhardtM,HerkeM,WustmannT,WatzkeS,LangerG,FinkA.Omega-3fattyacidsforthetreatmentofdementia.CochraneDatabaseSystRev.2016;4:Cd009002. (PubMed) 202. Freund-LeviY,Eriksdotter-JonhagenM,CederholmT,etal.Omega-3fattyacidtreatmentin174patientswithmildtomoderateAlzheimerdisease:OmegADstudy:arandomizeddouble-blindtrial.ArchNeurol.2006;63(10):1402-1408. (PubMed) 203. ShintoL,QuinnJ,MontineT,etal.Arandomizedplacebo-controlledpilottrialofomega-3fattyacidsandalphalipoicacidinAlzheimer'sdisease.JAlzheimersDis.2014;38(1):111-120. (PubMed) 204. QuinnJF,RamanR,ThomasRG,etal.DocosahexaenoicacidsupplementationandcognitivedeclineinAlzheimerdisease:arandomizedtrial.JAMA. 2010;304(17):1903-1911. (PubMed) 205. USDepartmentofAgricultureARS.USDANationalNutrientDatabaseforStandardReference,Release26.Availableat:http://www.ars.usda.gov/ba/bhnrc/ndl.Accessed4/25/14. 206. HendlerSS,RorvikDM.PDRfornutritionalsupplements:ThomsonReutersNewJersey;2008. 207. UlvenSM,KirkhusB,LamglaitA,etal.MetaboliceffectsofkrilloilareessentiallysimilartothoseoffishoilbutatlowerdoseofEPAandDHA,inhealthyvolunteers.Lipids.2011;46(1):37-46. (PubMed) 208. USFoodandDrugAdministration.CfFSaAN.AgencyResponseLetter:GRASNoticeNo.GRN000080.2001.Availableat:http://www.cfsan.fda.gov/~rdb/opa-g080.html.Accessed11/7/08. 209. ZurierRB,RossettiRG,JacobsonEW,etal.gamma-Linolenicacidtreatmentofrheumatoidarthritis.Arandomized,placebo-controlledtrial.ArthritisRheum.1996;39(11):1808-1817. (PubMed) 210. VaddadiKS.Theuseofgamma-linolenicacidandlinoleicacidtodifferentiatebetweentemporallobeepilepsyandschizophrenia.ProstaglandinsMed.1981;6(4):375-379. (PubMed) 211. NordstromDC,HonkanenVE,NasuY,AntilaE,FrimanC,KonttinenYT.Alpha-linolenicacidinthetreatmentofrheumatoidarthritis.Adouble-blind,placebo-controlledandrandomizedstudy:flaxseedvs.safflowerseed.RheumatolInt.1995;14(6):231-234. (PubMed) 212. AlonsoL,MarcosML,BlancoJG,etal.Anaphylaxiscausedbylinseed(flaxseed)intake.JAllergyClinImmunol.1996;98(2):469-470. (PubMed) 213. HarbigeLS.Fattyacids,theimmuneresponse,andautoimmunity:aquestionofn-6essentialityandthebalancebetweenn-6andn-3.Lipids.2003;38(4):323-341. (PubMed) 214. CarlsonSE,CookeRJ,WerkmanSH,TolleyEA.Firstyeargrowthofpreterminfantsfedstandardcomparedtomarineoiln-3supplementedformula.Lipids.1992;27(11):901-907. (PubMed) 215. CarlsonSE,WerkmanSH,TolleyEA.Effectoflong-chainn-3fattyacidsupplementationonvisualacuityandgrowthofpreterminfantswithandwithoutbronchopulmonarydysplasia.AmJClinNutr.1996;63(5):687-697. (PubMed) 216. SchulzkeSM,PatoleSK,SimmerK.Long-chainpolyunsaturatedfattyacidsupplementationinpreterminfants.CochraneDatabaseSystRev.2011(2):CD000375. (PubMed) 217. HendlerSS,RorvikDR,eds.PDRforNutritionalSupplements.Montvale:MedicalEconomicsCompany,Inc;2001. 218. MozaffarianD,RimmEB.Fishintake,contaminants,andhumanhealth:evaluatingtherisksandthebenefits.JAMA.2006;296(15):1885-1899. (PubMed) 219. EnvironmentalProtectionAgency.FishAdvisories[Website].April14,2003.Availableat:http://www.epa.gov/waterscience/fish/.Accessed4/28/03. 220. 2015-2020DietaryGuidelinesforAmericans.Availableat:https://health.gov/dietaryguidelines/2015/guidelines/.Accessed5/24/19. 221. ConsumerLab.ProductReview:FIshoilandomega-3fattyacidsupplementsreview(includingkrill,algae,calamari,green-lippedmusseloil).Availableat:http://www.consumerlab.com/results/omega3.asp.Accessed4/25/14. 222. HilbertG,LillemarkL,BalchenS,HojskovCS.Reductionoforganochlorinecontaminantsfromfishoilduringrefining.Chemosphere.1998;37(7):1241-1252. (PubMed) 223. BenderNK,KraynakMA,ChiquetteE,LinnWD,ClarkGM,BusseyHI.Effectsofmarinefishoilsontheanticoagulationstatusofpatientsreceivingchronicwarfarintherapy.JThrombThrombolysis.1998;5(3):257-261. (PubMed) 224. BuckleyMS,GoffAD,KnappWE.Fishoilinteractionwithwarfarin.AnnPharmacother.2004;38(1):50-52. (PubMed) 225. ValkEE,HornstraG.RelationshipbetweenvitaminErequirementandpolyunsaturatedfattyacidintakeinman:areview.IntJVitamNutrRes.2000;70(2):31-42. (PubMed) 226. HigdonJV,LiuJ,DuSH,MorrowJD,AmesBN,WanderRC.SupplementationofpostmenopausalwomenwithfishoilrichineicosapentaenoicacidanddocosahexaenoicacidisnotassociatedwithgreaterinvivolipidperoxidationcomparedwithoilsrichinoleateandlinoleateasassessedbyplasmamalondialdehydeandF(2)-isoprostanes.AmJClinNutr.2000;72(3):714-722. (PubMed) 227. WanderRC,DuSH,KetchumSO,RoweKE.alpha-Tocopherolinfluencesinvivoindicesoflipidperoxidationinpostmenopausalwomengivenfishoil.JNutr.1996;126(3):643-652. (PubMed) 228. WanderRC,DuSH.Oxidationofplasmaproteinsisnotincreasedaftersupplementationwitheicosapentaenoicanddocosahexaenoicacids.AmJClinNutr.2000;72(3):731-737. (PubMed) 229. LarqueE,Gil-SanchezA,Prieto-SanchezMT,KoletzkoB.Omega3fattyacids,gestationandpregnancyoutcomes.BrJNutr.2012;107Suppl2:S77-84. (PubMed) 230. AmericanHeartAssociation.FrequentlyAskedQuestionsAboutFish.Availableat:http://www.heart.org/HEARTORG/General/Frequently-Asked-Questions-About-Fish_UCM_306451_Article.jsp.Accessed4/25/14. 231. EFSAPanelonDieteticProducts,Nutrition,andAllergies(NDA).Scientificopinionondietaryreferencevaluesforfats,includingsaturatedfattyacids,polyunsaturatedfattyacids,monounsaturatedfattyacids,transfattyacids,andcholesterol.EFSAJournal.2010;8(3):107. 232. EuropeanFoodSafetyAuthority.TheDRVFinder.Availableat:https://www.efsa.europa.eu/en/interactive-pages/drvs.Accessed5/24/19. 233. FAO/WHO.InterimSummaryofConclusionsandDietaryRecommendationsonTotalFat&FattyAcids.JointFAO/WHOExpertConsultationonFatsandFattyAcidsinHumanNutrition.Geneva:WHO;2008:1-14. 234. InternationalSocietyfortheStudyofFattyAcidsandLipids(ISSFAL).Recommendationsforintakeofpolyunsaturatedfattyacidsinhealthyadults.Availableat:https://www.issfal.org/statement-3.Accessed4/24/19. ‹Choline up Fiber› Printer-friendlyversion DonatetotheMIC GetUpdatesfromtheInstitute Disclaimer TheLinusPaulingInstitute'sMicronutrientInformationCenterprovidesscientificinformationonthehealthaspectsofdietaryfactorsandsupplements,food,andbeveragesforthegeneralpublic.Theinformationismadeavailablewiththeunderstandingthattheauthorandpublisherarenotprovidingmedical,psychological,ornutritionalcounselingservicesonthissite.Theinformationshouldnotbeusedinplaceofaconsultationwithacompetenthealthcareornutritionprofessional. Theinformationondietaryfactorsandsupplements,food,andbeveragescontainedonthiswebsitedoesnotcoverallpossibleuses,actions,precautions,sideeffects,andinteractions.Itisnotintendedasnutritionalormedicaladviceforindividualproblems.Liabilityforindividualactionsoromissionsbaseduponthecontentsofthissiteisexpresslydisclaimed. Youmaynotcopy,modify,distribute,display,transmit,perform,publishorsellanyofthecopyrightablematerialonthiswebsite.Youmayhyperlinktothiswebsitebutmustincludethefollowingstatement: "ThislinkleadstoawebsiteprovidedbytheLinusPaulingInstituteatOregonStateUniversity. [Yourname]isnotaffiliatedorendorsedbytheLinusPaulingInstituteorOregonStateUniversity." ContactInfo LinusPaulingInstitute|OregonStateUniversity 307LinusPaulingScienceCenter Corvallis,Oregon97331 phone:541-737-5075|fax:541-737-5077 email: [email protected] Formediacontactinformation Copyright ©2022OregonStateUniversity Disclaimer
延伸文章資訊
- 1Essential Fatty Acids | Linus Pauling Institute
Omega-6 and omega-3 fatty acids are polyunsaturated fatty acids (PUFA), meaning they contain more...
- 2Essential fatty acid - Wikipedia
Only two fatty acids are known to be essential for humans: alpha-linolenic acid (an omega-3 fatty...
- 3The essentials of essential fatty acids - PubMed
All fats, including saturated fatty acids, have important roles in the body. However, the most im...
- 4Essential Fatty Acid - an overview | ScienceDirect Topics
Essential fatty acids are lipids that are not metabolized by the body and therefore must be obtai...
- 5What are essential fatty acids? Foods, definition, and ...
Essential fatty acids include omega-3 and omega-6 fatty acids. They are essential to health and p...