Let U be an open set in R. Then U is a countable union of disjoint intervals. This question has probably been asked.
MathematicsStackExchangeisaquestionandanswersiteforpeoplestudyingmathatanylevelandprofessionalsinrelatedfields.Itonlytakesaminutetosignup.
Signuptojointhiscommunity
Anybodycanaskaquestion
Anybodycananswer
Thebestanswersarevotedupandrisetothetop
Home
Public
Questions
Tags
Users
Unanswered
Teams
StackOverflowforTeams
–Startcollaboratingandsharingorganizationalknowledge.
CreateafreeTeam
WhyTeams?
Teams
CreatefreeTeam
Teams
Q&Aforwork
Connectandshareknowledgewithinasinglelocationthatisstructuredandeasytosearch.
Learnmore
Anyopensubsetof$\BbbR$isacountableunionofdisjointopenintervals
AskQuestion
Asked
9years,2monthsago
Modified
19daysago
Viewed
102ktimes
256
221
$\begingroup$
Let$U$beanopensetin$\mathbbR$.Then$U$isacountableunionofdisjointintervals.
Thisquestionhasprobablybeenasked.However,Iamnotinterestedinjustgettingtheanswertoit.Rather,Iaminterestedincollectingasmanydifferentproofsofitwhichareasdiverseaspossible.Aprofessortoldmethattherearemany.So,Iinviteeveryonewhohasseenproofsofthisfacttosharethemwiththecommunity.Ithinkitisaresultworthknowinghowtoproveinmanydifferentwaysandhavingapostthatcombinesasmanyofthemaspossiblewill,nodoubt,bequiteuseful.Aftertwodays,Iwillplaceabountyonthisquestiontoattractasmanypeopleaspossible.Ofcourse,anycomments,corrections,suggestions,linkstopapers/notesetc.aremorethanwelcome.
real-analysisgeneral-topologybig-listfaq
Share
Cite
Follow
editedJun8,2020at3:30
communitywiki
7revs,5users60%ArcticChar
$\endgroup$
14
108
$\begingroup$
Firstproofthatcomesinmind:if$O$isanopensetand$x\inO$thenthereexistsaninterval$I$suchthat$x\inI\subsetO$.Ifthereexistsonesuchinterval,thenthereexistsone'largest'intervalwhichcontains$x$(theunionofallsuchintervals).Denoteby$\{I_\alpha\}$thefamilyofallsuchmaximalintervals.Firstallintervals$I_\alpha$arepairwisedisjoint(otherwisetheywouldn'tbemaximal)andeveryintervalcontainsarationalnumber,andthereforetherecanonlybeacountablenumberofintervalsinthefamily.
$\endgroup$
– BeniBogosel
Mar2,2013at0:12
1
$\begingroup$
Sincethisisabig-listquestion,IamconvertingittoCW.
$\endgroup$
– robjohn
♦
Mar2,2013at9:01
$\begingroup$
Oh,OK!Thanks!
$\endgroup$
– OrestXherija
Mar3,2013at1:04
$\begingroup$
Icannotunderstandhoweach$I_a$isdisjoint.Ifoneintervalcontainsxandanotherintervalalsocontainsx,aren'ttheyintersecting?
$\endgroup$
– mesllo
May29,2014at1:41
$\begingroup$
Yesbuttheirunionwouldthenbeanotherintervalthatcontainsan$I_a$andthereforemustbeequaltoitbymaximality.
$\endgroup$
– GregoryGrant
Mar15,2015at16:36
|
Show9morecomments
16Answers
16
Sortedby:
Resettodefault
Highestscore(default)
Datemodified(newestfirst)
Datecreated(oldestfirst)
176
+100
$\begingroup$
Here’sonetogetthingsstarted.
Let$U$beanon-emptyopensubsetof$\BbbR$.For$x,y\inU$define$x\simy$iff$\big[\min\{x,y\},\max\{x,y\}\big]\subseteqU$.It’seasilycheckedthat$\sim$isanequivalencerelationon$U$whoseequivalenceclassesarepairwisedisjointopenintervalsin$\BbbR$.(Thetermintervalhereincludesunboundedintervals,i.e.,rays.)Let$\mathscr{I}$bethesetof$\sim$-classes.Clearly$U=\bigcup_{I\in\mathscr{I}}I$.Foreach$I\in\mathscr{I}$choosearational$q_I\inI$;themap$\mathscr{I}\to\BbbQ:I\mapstoq_I$isinjective,so$\mathscr{I}$iscountable.
Avariantofthesamebasicideaistolet$\mathscr{I}$bethesetofopenintervalsthataresubsetsof$U$.For$I,J\in\mathscr{I}$define$I\simJ$iffthereare$I_0=I,I_1,\dots,I_n=J\in\mathscr{I}$suchthat$I_k\capI_{k+1}\ne\varnothing$for$k=0,\dots,n-1$.Then$\sim$isanequivalencerelationon$\mathscr{I}$.For$I\in\mathscr{I}$let$[I]$bethe$\sim$-classof$I$.Then$\left\{\bigcup[I]:I\in\mathscr{I}\right\}$isadecompositionof$U$intopairwisedisjointopenintervals.
BothoftheseargumentsgeneralizetoanyLOTS(=LinearlyOrderedTopologicalSpace),i.e.,anylinearlyorderedset$\langleX,\le\rangle$withthetopologygeneratedbythesubbaseofopenrays$(\leftarrow,x)$and$(x,\to)$:if$U$isanon-emptyopensubsetof$X$,then$U$istheunionofafamilyofpairwisedisjointopenintervals.Ingeneralthefamilyneednotbecountable,ofcourse.
Share
Cite
Follow
editedJun26,2015at14:00
communitywiki
4revs,3users80%BrianM.Scott
$\endgroup$
10
22
$\begingroup$
IlikethisanswerLOTS.:-)And+1.
$\endgroup$
– coffeemath
Mar2,2013at1:30
2
$\begingroup$
Thisanswerisveryclear.Itdependsontheaxiomofchoicethough,arethereanyconstructivevariantsofthisargument?
$\endgroup$
– Bunder
Mar2,2013at8:28
8
$\begingroup$
@Bunder:No,itdoesn’tdependontheaxiomofchoice.TheonlyplacewhereyoumighteventhinkthatitdidiswhenIshowedthatthereareonlycountablymanyintervals,buttherationalscanbeexplicitlywell-ordered,sonochoiceisnecessaryeventhere.
$\endgroup$
– BrianM.Scott
Mar2,2013at12:24
1
$\begingroup$
Whyaretheequivalenceclassesopen?
$\endgroup$
– IntegrateThis
Sep20,2018at22:14
3
$\begingroup$
@IntegrateThis.Let$S$bea$\sim$-equivalenceclass.Forany$x\inS$thereexists$r>0$suchthat$(-r+x,r+x)\subsetU$so$\forally\in(-r+x,r+x)\;(y\simx).$So$(-r+x,r+x)\subset\{y\inU:y\simx\}=S.$
$\endgroup$
– DanielWainfleet
Sep24,2018at20:38
|
Show5morecomments
64
$\begingroup$
Theseanswersallseemtobevariationsononeanother,butI'vefoundeachonesofartobeatleastalittlecryptic.Here'smyversion/adaptation.
Let$U\subseteq\mathbb{R}$beopenandlet$x\inU$.Either$x$isrationalorirrational.If$x$isrational,define
\begin{align}I_x=\bigcup\limits_{\substack{I\text{anopeninterval}\\x~\in~I~\subseteq~U}}I,\end{align}
which,asaunionofnon-disjointopenintervals(each$I$contains$x$),isanopenintervalsubsetto$U$.If$x$isirrational,byopennessof$U$thereis$\varepsilon>0$suchthat$(x-\varepsilon,x+\varepsilon)\subseteqU$,andthereexistsrational$y\in(x-\varepsilon,x+\varepsilon)\subseteqI_y$(bythedefinitionof$I_y$).Hence$x\inI_y$.Soany$x\inU$isin$I_q$forsome$q\inU\cap\mathbb{Q}$,andso
\begin{align}U\subseteq\bigcup\limits_{q~\in~U\cap~\mathbb{Q}}I_q.\end{align}
But$I_q\subseteqU$foreach$q\inU\cap\mathbb{Q}$;thus
\begin{align}U=\bigcup\limits_{q~\in~U\cap~\mathbb{Q}}I_q,\end{align}
whichisacountableunionofopenintervals.
Share
Cite
Follow
editedMay3at23:14
communitywiki
2revs,2users94%Stromael
$\endgroup$
2
1
$\begingroup$
Hewantedacountableunionofdisjointopenintervals.If$U$issimplyanopeninterval,then$U=I_q=I_{\tilde{q}}$forall$q,\tilde{q}\in\mathcal{Q}\capU$.
$\endgroup$
– JoséSiqueira
Oct15,2013at16:15
8
$\begingroup$
Thatitisadisjointunionfollowsfromthedefinitionof$I_q$:if$x\inI_q\capI_p$then$I_q\cupI_p\subseteqI_q$and$I_p$;henceif$I_q\neqI_p$then$I_q\capI_p=\emptyset$.Strictlyspeakingoneshouldthrowawayallrepeated$I_q$s,andonecandefinitelydothiswithoutdestroyingthecountabilityoftheunion.
$\endgroup$
– Stromael
Oct21,2013at11:14
Addacomment
|
22
$\begingroup$
Inalocallyconnectedspace$X$,allconnectedcomponentsofopensetsareopen.Thisisinfactequivalenttobeinglocallyconnected.
Proof:(onedirection)let$O$beanopensubsetofalocallyconnectedspace$X$.Let$C$beacomponentof$O$(asa(sub)spaceinitsownright).Let$x\inC$.Thenlet$U_x$beaconnectedneighbourhoodof$x$in$X$suchthat$U_x\subsetO$,whichcanbedoneas$O$isopenandtheconnectedneighbourhoodsformalocalbase.Then$U_x,C\subsetO$arebothconnectedandintersect(in$x$)sotheirunion$U_x\cupC\subsetO$isaconnectedsubsetof$O$containing$x$,sobymaximalityofcomponents$U_x\cupC\subsetC$.Butthen$U_x$witnessesthat$x$isaninteriorpointof$C$,andthisshowsallpointsof$C$areinteriorpoints,hence$C$isopen(ineither$X$or$O$,that'sequivalent).
Now$\mathbb{R}$islocallyconnected(openintervalsformalocalbaseofconnectedsets)andsoeveryopensetifadisjointunionofitscomponents,whichareopenconnectedsubsetsof$\mathbb{R}$,henceareopenintervals(potentiallyofinfinite"length",i.e.segments).Thattherearecountablymanyofthematmost,followsfromthealreadygiven"rationalineveryinterval"argument.
Share
Cite
Follow
answeredMar2,2013at7:06
communitywiki
HennoBrandsma
$\endgroup$
2
$\begingroup$
"connected=>interval"alsorequiresaproof(usuallyusingtheintermediatestep"path-connected").
$\endgroup$
– MartinBrandenburg
Mar4,2013at19:29
1
$\begingroup$
Pathconnectedisnotneeded.Itwouldbecircular,asoneneedsconnectednessofintervalstoseethatpath-connectedimpliesconnected...Ifasetisnotorderconvex(sox0\}$and$\beta_x=\sup\{\beta\in\mathbbR:(\alpha_x,\beta)\subseteqU\}$.
Then$\displaystyleU=\bigcup_{x\inU}(\alpha_x,\beta_x)$where$\{(\alpha_x,\beta_x):x\inU\}$isadisjointfamilyofopenintervals.
Theintervalsappearingintheunionaredisjointinthesensethateverytime$x,y\inU$with$x0\},$$$$\alpha_y=\inf\{\overline\alpha\leqx:(\overline\alpha,y+\overline\epsilon)\subseteqU,\text{forsome}\overline\epsilon>0\},$$andthesearethesame;sothenalso$\beta_x$and$\beta_y$arethesame.
Share
Cite
Follow
editedDec27,2021at1:55
communitywiki
4revs,2users70%P..
$\endgroup$
3
1
$\begingroup$
Areyousuretheunioniscountablehere?
$\endgroup$
– user10444
Sep11,2014at16:55
3
$\begingroup$
@user10444:Itiscountableyes!Ifyouagreethat$\{(\alpha_x,\beta_x):x\inU\}$isadisjointfamilyofopenintervalsthenyoucanseeitbychoosing$r_x\in\mathbbQ\cap(\alpha_x,\beta_x)$forall$x\inU$.Then$\{r_x:x\inU\}$iscountableright?Notethattheintervals$\{(\alpha_x,\beta_x):x\inU\}$arenotdistinct!
$\endgroup$
– P..
Sep11,2014at19:03
3
$\begingroup$
Recall,wecan"choose"suchan$r_{x}\in(\alpha_{x},\beta_{x})$suchthat$r_{x}\in\mathbb{Q}$bytheAxiomofChoiceandbythedensityof$\mathbb{Q}$in$\mathbb{R}$.
$\endgroup$
– Procore
Aug30,2017at20:29
Addacomment
|
15
$\begingroup$
Thisproofisanextendedversionoftheniceproofproposedby
Stromaelanditservesbestforbeginnerswhowanttounderstandeverydetail(thatonethatforanyestablishedmathematicianlogicallyseemstrivial)oftheproof.
$\textbf{Proof:}$
Let$U\subseteq\mathbb{R}$beopenandlet$x\inU$.ThenEither$x$isrationalor$x$isirrational.
Suppose$x$isrational,thendefine
\begin{align}I_x=\bigcup\limits_{\substack{I\text{anopeninterval}\\x~\in~I~\subseteq~U}}I,\end{align}
Claim:$I_x$isinterval,$I_x$isopenand$I_x\subseteqU$
Definition:Anintervalisasubset$I\subseteq\mathbb{R}$suchthat,forall$ax$:If$c>x$thenwehavethateither$a0$suchthat$(x-\varepsilon,x+\varepsilon)\subseteqU$,andbythepropertyofrealnumbersthatforanyirrationalnumberthereexistsasequenceofrationalunmbersthatconvergestothatirrationalnumber,thereexistsrational$y\in(x-\varepsilon,x+\varepsilon)$.Thenbyconstruction$(x-\varepsilon,x+\varepsilon)\subseteqI_y$.Hence$x\inI_y$.Soany$x\inU$isin$I_q$forsome$q\inU\cap\mathbb{Q}$,andso
\begin{align}U\subseteq\bigcup\limits_{q~\in~U\cap~\mathbb{Q}}I_q.\end{align}
But$I_q\subseteqU$foreach$q\inU\cap\mathbb{Q}$;thus
\begin{align}U=\bigcup\limits_{q~\in~U\cap~\mathbb{Q}}I_q,\end{align}
whichisacountableunionofopenintervals.
Nowlet'sshowthatintervals$\{I_q\}~\q\inU\cap\mathbb{Q}$aredisjoint.Supposethereis$i,j,\inU\cap\mathbb{Q}$suchthat$I_i\capI_j\neq\emptyset$then$I_i\subseteqI_q$and$I_j\subseteqI_q$forsome$q\inU\cap\mathbb{Q}$
Henceweconstructeddisjointintervals$\{I_q\}~\q\inU\cap\mathbb{Q}$thatareenumeratedbyrationalnumbersin$U$andwhoseunionis$U$.Sinceanysubsetofrationalnumbersiscountable,$\{I_q\}~\q\inU\cap\mathbb{Q}$iscountableaswell.Thisfinishestheproof.
Share
Cite
Follow
editedMay3at23:15
communitywiki
4revs,4users96%G.T.
$\endgroup$
3
1
$\begingroup$
Whatistheguaranteeofthestatement'Denote$I_a$tobeanintervalsuchthat$x\inI_a$'?
$\endgroup$
– user464147
Dec30,2018at14:47
$\begingroup$
Alsotomethefirstpartofthisanswerseemedobscure,Itriedtoclarifyitheremath.stackexchange.com/questions/3040319/…
$\endgroup$
– JackJ.
Jan17,2019at9:28
$\begingroup$
MostprobablyIamverylateforthiscommentbutstillIwillclarify.Byconstruction$I_x$issuchthat$x\in$every$I$thatforms$I_x$.ThenIsaythat$a\inI_x$thisimpliesthat$a$mustbeamemberofoneofthe$I$sthatform$I_x$.Why?Becauseifthisisnotthecasethen$a$isnotin$I_x$.ThenIjusttakeandcall$I_a$oneofthe$I$sthatcontainthat$a$.Since$x\in$everyI$x$willbeamemberofthatparticular$I$thatwedefinedas$I_a$Letmeknowifthisiswrongandwhy.
$\endgroup$
– G.T.
Sep5,2020at7:15
Addacomment
|
9
$\begingroup$
Avariantoftheusualproofwiththeequivalencerelation,whichtradesintheeaseofconstructingtheintervalswiththeeaseofprovingcountability(notthateitherishard...):
Definethesameequivalencerelation,butonlyon$\mathbbQ\capU$:
$q_1\simq_2$iff$(q_1,q_2)\subsetU$(or$(q_2,q_1)\subsetU$,whichevermakessense).
Fromeachequivalencyclass$C$,producetheopeninterval$(\infC,\supC)\subsetU$(where$\infC$isdefinedtobe$-\infty$incase$C$isnotboundedfrombelow,and$\supC=\infty$incase$C$isnotboundedfromabove).
Theamountofequivalenceclassesisclearlycountable,since$\mathbbQ\capU$iscountable.
Share
Cite
Follow
answeredMar2,2013at1:28
communitywiki
YoniRozenshein
$\endgroup$
Addacomment
|
8
$\begingroup$
Let$U$beanopensubsetof$\mathbb{R}$.Let$P$betheposetconsistingofcollections$\mathcal{A}$ofdisjointopenintervalswherewesay$\mathcal{A}\le\mathcal{A}'$ifeachofthesetsin$\mathcal{A}$isasubsetofsomeopenintervalin$\mathcal{A}'$.Everychain$C$inthisposethasanupperbound,namely$$\mathcal{B}=\left\{\bigcup\left\{J\in\bigcup\bigcupC:I\subseteqJ\right\}:I\in\bigcup\bigcupC\right\}.$$
ThereforebyZorn'slemmatheposet$P$hasamaximalelement$\mathcal{M}$.Weclaimthattheunionoftheintervalsin$\mathcal{M}$isallof$U$.Supposetowardacontradictionthatthereisareal$x\inU$thatisnotcontainedinanyoftheintervalsin$\mathcal{M}$.Because$U$isopenwecantakeanopeninterval$I$with$x\inI\subseteqU$.
Thentheset
$$\mathcal{M}'=\{J\in\mathcal{M}:J\capI=\emptyset\}\cup\left\{I\cup\bigcup\{J\in\mathcal{M}:J\capI\ne\emptyset\}\right\}$$
isacollectionofdisjointopenintervalsand
isabove$\mathcal{M}$intheposet$P$,contradictingthemaximalityof$\mathcal{M}$.Itremainstoobservethat$\mathcal{M}$iscountable,whichfollowsfromthefactthatitselementscontaindistinctrationalnumbers.
Notethattheonlywayinwhichanythingaboutorder(orconnectedness)isusedistoseethat$I\cup\bigcup\{J\in\mathcal{M}:J\capI\ne\emptyset\}$isaninterval.
Share
Cite
Follow
editedMar8,2013at2:17
communitywiki
2revsTrevorWilson
$\endgroup$
3
$\begingroup$
Andyes,beforeyouask,Iknowthisproofissilly.
$\endgroup$
– TrevorWilson
Mar8,2013at2:21
2
$\begingroup$
Ithinkthisproofconceptuallyconnectsmanythings,includingwell-ordering,ordertheoryandsoon.So,Ireallybenefited.
$\endgroup$
– user64066
Oct22,2013at20:19
$\begingroup$
@user64066Thanks,I'mgladtohearit.
$\endgroup$
– TrevorWilson
Oct22,2013at20:30
Addacomment
|
7
$\begingroup$
$\mathbb{R}$withstandardtopologyissecond-countablespace.
Forasecond-countablespacewitha(notnecessarilycountable)base,anyopensetcanbewrittenasacountableunionofbasicopenset.
Givenanybaseforasecondcountablespace,iseveryopensetthecountableunionofbasicopensets?
Clearly,collectionofopenintervalsisabaseforthestandardtopology.
Henceanyopensetin$\mathbb{R}$canbewrittenascountableunionofopenintervals.
Ifanytwoofexploitedopenintervalsoverlap,mergethem.Thenwehavedisjointunionofopenintervals,whichisstillcountable.
Share
Cite
Follow
editedApr13,2017at12:19
communitywiki
2revsGuldam
$\endgroup$
Addacomment
|
6
$\begingroup$
Let$G$beanonemptyopensetin$\mathbb{R}$.Write$a\simb$iftheclosedinterval$[a,b]$or$[b,a]$if$b\delta_1\geq\gamma_1,\beta>\delta_2\geq\gamma_2$s.t.$J^{\gamma_1}_{\delta_1}\capJ^{\gamma_2}_{\delta_2}\neq\emptyset$,meaningthateither$J^{\gamma_1}_{\delta_2}=J^{\gamma_2}_{\delta_2}$or$J^{\gamma_1}_{\delta_1}=J^{\gamma_2}_{\delta_1}$thus,$\forall\beta>\epsilon\geq\delta_1,\delta_2$,$J^{\gamma_1}_{\epsilon}=J^{\gamma_2}_{\epsilon}$andsincewearetalkinghereaboutnon-decreasingsequences,thiswillcontradict$\widetilde{J}_{\gamma_1}\neq\widetilde{J}_{\gamma_2}$).Andif$I_\beta$isn'tdisjointofall$\widetilde{J}_\gamma$,Thenwecantake$J_\beta^\gamma=\widetilde{J}_\gamma$forall$\gamma0$suchthat$(y-\epsilon,y+\epsilon)\subseteqU$.
Setsofrealnumbersareconnectedifftheyareintervals,singletonsorempty.
$(y-\epsilon,y+\epsilon)$anintervalhenceitisconnected.
Thereforesince$U_y$isthelargestconnectedsubsetof$U$containing$y$wemusthave$(y-\epsilon,y+\epsilon)\subseteqU_y=U_x$.
Thisshowsthat$U_x$isopenforall$x$.
$U_x$openandconnectedimpliesthat$U_x$mustbeanopeninterval.
Also$\mathbb{Q}$densein$\mathbb{R}$,
so$\forallx\inU$,$U_x\cap\mathbb{Q}\neq\varnothing$and$U_x=U_q$forsome$q\in\mathbb{Q}$.
Sowecanwrite$\{U_x\}_{x\inU}=\{U_q\}_{q\inS}$forsome$S\subseteq\mathbb{Q}$.
$\mathbb{Q}$iscountableso$S$isatmostcountable.
Inconclusion,wehavejustshownthattheunionoftheconnectedcomponentsof$U$isadisjointunionofopenintervalsthatequals$U$andisatmostcountable.
Share
Cite
Follow
answeredMay31,2017at22:25
communitywiki
NathanA.S.
$\endgroup$
Addacomment
|
4
$\begingroup$
Theproofthateveryopensetisadisjointunionofcountablymanyopenintervalsreliesonthreefacts:
$\BbbR$islocally-connected
$\BbbR$isccc
Theopenconnectedsetsin$\BbbR$areopenintervals
Let$U\subseteq\BbbR$beopen.Thenthereisacollectionofdisjoint,open,connectedsets$\{G_\alpha\}_{\alpha\inA}$suchthat$U=\bigcup_{\alpha\inA}G_\alpha$.Since$\BbbR$isccc,thecollection$\{G_\alpha\}$isatmostcountable.Sincetheopenconnectedsets$\BbbR$areopenintervals,$\{G_\alpha\}$isacountablecollectionofdisjoint,openintervals.
Thefirsttwofactsallowustoseesomegeneralizations.Namelyanyopensetinalocally-connected,cccspaceisacountabledisjointunionofconnectedopensets.ThisappliestoanyEuclideanspace.AlthoughopenconnectedsubsetsofEuclideanspacearemorecomplicatedthanopenintervals,theyarestillrelativelywell-behaved.
Share
Cite
Follow
answeredJul31,2014at18:16
communitywiki
user123641
$\endgroup$
4
$\begingroup$
Whatdoes"Risccc"mean?
$\endgroup$
– ChristianBueno
Feb24,2015at8:39
$\begingroup$
Itmeans"satisfiesthecountable-chaincondition"whichreallyconcernsitselfwithanti-chains.Itmeansthateverycollectionofdisjointopensetsisatmostcountable.Everyseparablespaceisccc.
$\endgroup$
– user123641
Feb25,2015at0:56
$\begingroup$
Okthanksforclearingthatup.
$\endgroup$
– ChristianBueno
Feb25,2015at5:18
$\begingroup$
howtodecompose(0,1}intoacountableunionofdisjointopenintervals?
$\endgroup$
– Bearandbunny
Mar27,2015at15:31
Addacomment
|
4
$\begingroup$
Thefollowingiscertainlynotthequickestapproachtoaproof,butwhenthisquestionwasfirstposedtomeinclass,myfirstintuitionwastousesomeelementarygraphtheory:
Let$U$beanopensetof$\mathbb{R}$.Asweknow,$\mathbb{R}$hasacountablebasis$\mathcal{B}$comprisedofconnectedopensetsandsowemaywrite$U=\bigcup_{n\inI}U_n$,whereforeach$n$wehave$U_n\in\mathcal{B}$and$I$issomecountableindexset.
Let$G$betheintersectiongraphof$\{U_n\}$.Thatistosay,thevertexsetof$G$issimply$\{U_n\}$andthereisanedgebetween$U_i$and$U_j$ifftheyhavenonemptyintersection.It'seasytoconvinceyourselfthat:
Thisgraphmusthavecountablymanygraphically-connectedcomponents(otherwisewe'dhaveuncountablymanyverticeswhichisimpossible).
Theintersectiongraphof$A\subseteq\{U_n\}$isgraphically-connectediffforanytwo$V,W\inA$thereisasequence$V=U_{n_1},U_{n_2},\ldots,U_{n_k}=W$suchthat$U_{n_i}\capU_{n_{i+1}}\neq\varnothing$.
Theunion$\bigcupA$isaconnectedsetof$\mathbb{R}$whenevertheintersectiongraphof$A$isgraphically-connected.
Thus,whenwetaketheunionofalltheverticeswithinagraphically-connectedcomponent,foreverycomponent,weobtaincountably-manyconnectedopensets.Theunionofthesesetsisofcourse$U$itself.Sincetheconnectedopensetsof$\mathbb{R}$areintervals(includingrays),we'redone.
SideNote:Thiswouldalsoworkin$\mathbb{R}^n$oringeneral,anytopologicalspace$X$thathasacountablebasiscomprisedofconnectedsets.Well,solongaswereplacecountableunionofdisjointopenintervalswithcountableunionofdisjointopenconnectedsets.
Share
Cite
Follow
answeredFeb24,2015at8:38
communitywiki
ChristianBueno
$\endgroup$
Addacomment
|
4
$\begingroup$
Theballswithradii$\frac{1}{n}$andcenteratarationalnumberformabasisfortheeuclideantopology.Thisfamilyiscountablesince$\mathbbN\times\mathbbQ\equiv\mathbbN$andwehaveacountablebasis$(B_\lambda)_{\,\lambda\in\mathbbN\times\mathbbQ}$ofopenintervalsfor$\mathbbR$.
Let$U$beanonemptyopensetin$\mathbbR$;wecanexpressitascountableunionofopenballsfrom$(B_\lambda)$.
Also,
$\tag1\text{}$
$\quad$Iftwoopenintervalshaveanonemptyintersection,thentheirunionisalsoanopeninterval.
Soif$U$isafiniteunionofthe$B_\lambda$,itisaneasymattertocombinethe$B_\lambda$,ifnecessary,andwriting$U$asadisjointunionofafinitenumberofopenintervals.Soassume,WLOG,that
$\tag2U=\bigcup_{\,n\in\mathbbN\,}B_n$.
Wedefinearelationonour(new)indexset$\mathbbN$with$m\simn$if$B_m\capB_n\ne\emptyset$orthereisisafinite'nonemptyintersection$B\text{-}$chain'connecting$B_m$with$B_n$.Itiseasytoseethatthispartitions$\mathbbN$andthattakingthecorrespondingunionsofthe$B_n$overanindex$\lambda\text{-}$blockgivesapartitionof$U$.Also,using(1),wecanshowthatwehavealsoexpressed$U$asacountableunionofdisjointopenintervals.
Share
Cite
Follow
editedNov6,2017at19:32
communitywiki
3revsMikeMathMan
$\endgroup$
Addacomment
|
3
$\begingroup$
Moreofaquestionthananswer.Iamachemistturnedpharmacist,whowishestohavestudiedmathematics.IamtryingtoworkthroughRudin'sPrinciplesofMathematicalAnalysis.Ienvyyouallwhoareinvolvedinmathforacareer.
Cansomeonegivemefeedbackonmyattemptataproofin$\mathbbR?Completelynoviceandnotatallpretty,butisitsound?
segment:=openintervalinR.
Lemma:disjointsegmentsinRareseparated(proofnotshown).
ItfollowsfromthelemmathatanopenconnectedsubsetofRcannotbetheunionofdisjointsegments.
LetEbeanopensubsetofR.SinceRisseparablebyRudinprob2.22,thereexistsasubset,D,ofRthatiscountableanddenseinR.AssumeEisconnected,whichincludesE=R,thenEistheunionofanatmostcountablecollectionofopensegments,containingonlyE.
SupposeEisseparated.ThenEistheunionofacollectionofdisjointsegments,includingthepossibilityofsegmentsunboundedaboveorbelow.
Ifthecollectionisfinite,thenitisatmostcountable.
Assumethecollectionofsegmentsisinfinite.BecauseDisdenseinRandEiscontainedinR,everyopensubsetofEcontainsapointofD.TheneachoftheinfinitelymanydisjointsegmentscontainsauniquepointofD.SinceDiscountable,aone-to-onecorrespondencebetweenauniquepointofDandthesegmentisestablished.Thisimpliesthattherearecountablymanydisjointsegmentsinthecollection.
ThereforeEistheunionoffinitelymanyorcountablymany
,henceatmostcountablymany,disjointsegments.
Share
Cite
Follow
editedSep24,2018at17:43
communitywiki
3revs,2users97%RJM
$\endgroup$
6
1
$\begingroup$
Moreofaquestionthananswer.Isupposethiswouldbebetterpostedasaquestionthanasananswer,then.SupposeEisseparated.ThenEistheunionofacollectionofdisjointsegments.It'snotobvious(tome,atleast)wherethisfollowsfrominthegivencontext.
$\endgroup$
– dxiv
Oct9,2016at5:43
1
$\begingroup$
Iknow.Justlearninghowthingsworkonthissite.WhichIthinkisquiteamazing.
$\endgroup$
– RJM
Oct9,2016at5:48
$\begingroup$
@dxivSinceEseparated(ornotconnected),wouldithavetoatleastbetheunionof2separatedsets.Sinceitisopen,theyhavetobeopensubsets,whichimpliesopenintervalinR1.Thankyou!
$\endgroup$
– RJM
Oct9,2016at5:53
$\begingroup$
@dxiviwillnotkeepbuggingyou.Anytipsonhowtobecomemathematician-likeonone'sowninessentiallymatgematicaisolation?
$\endgroup$
– RJM
Oct9,2016at6:00
$\begingroup$
IMHOthatlatterimpliesopenintervalinR1isapartthatneedstobeprovedinthiscontext.SeeforexampleIntervalsareconnectedandtheonlyconnectedsetsinR.Anyway,asIsaid,yoursappearstobebettersuitedasaquestionthanasananswer.P.S.Keeppluggingawayuntilitallstartsmakingsense;-)
$\endgroup$
– dxiv
Oct9,2016at6:00
|
Show1morecomment
YourAnswer
ThanksforcontributingananswertoMathematicsStackExchange!Pleasebesuretoanswerthequestion.Providedetailsandshareyourresearch!Butavoid…Askingforhelp,clarification,orrespondingtootheranswers.Makingstatementsbasedonopinion;backthemupwithreferencesorpersonalexperience.UseMathJaxtoformatequations.MathJaxreference.Tolearnmore,seeourtipsonwritinggreatanswers.
Draftsaved
Draftdiscarded
Signuporlogin
SignupusingGoogle
SignupusingFacebook
SignupusingEmailandPassword
Submit
Postasaguest
Name
Email
Required,butnevershown
PostYourAnswer
Discard
Byclicking“PostYourAnswer”,youagreetoourtermsofservice,privacypolicyandcookiepolicy
Nottheansweryou'relookingfor?Browseotherquestionstaggedreal-analysisgeneral-topologybig-listfaqoraskyourownquestion.
FeaturedonMeta
AnnouncingthearrivalofValuedAssociate#1214:Dalmarus
Improvementstositestatusandincidentcommunication
Linked
1
ProvingEveryopensetin$\BbbR$isacountableunionofopenintervals.
2
Provethaunionofopenintervalscanbewrittenasaunionofdisjointopenintervals
0
Showthateveryopensetinℝcanbewrittenasacountableunionofopenintervals
1
Anexerciseonunionofopensets
0
Provethateverynonemptyopensubsetof$\mathbb{R}$canbeexpressedasacountabledisjointunionofopenintervalsandanotherproblem.
1
Anysetof$\mathbbR$isopeniffitistheunionofdisjointopenintervals
0
Anyopenset$G\subset\mathbb{R}$hastheform$G=\sqcup_i(a_i,b_i)$.
20
If$\int_0^xf\dm$iszeroeverywherethen$f$iszeroalmosteverywhere
8
HowcanIfindallsolutionstodifferentialequation?
8
Showthatagivensethasfullmeasureormeasure0
Seemorelinkedquestions
Related
5
Anyopensubsetof$\mathbbR$isanuniquelycountableunionofdisjointopenintervals
2
Whycananyunionofopenintervalsbewrittenasunionofdisjointopenintervals?
3
Whataretheprincipal(different)mechanismsofinfinitedescentproof?
2
Opensubsetof$\mathbb{R}$canbewrittenascountableunionofdisjointopenintervals,intuition?
2
Anopensubsetof$\mathbb{R}$isanat-most-countableunionofdisjointopenintervals
0
Writingboundedsubsetascountableunionofdisjointintervals
5
Everyopensubset$U\subseteq\mathbb{R}$iscountableunionofdisjointopenintervals.
0
$\mathbb{R}$isunionofcountablecollectionofdisjointopenintervals
HotNetworkQuestions
Wouldn'tMiller'splanetbefriedbyblueshiftedradiation?
Unfoldcylindricalobjectaroundrotationaxis
LightweightPDFreaderonWindowswithbareminimumtext-highlightingfeature
Iwant8bitsforeverycharacter!
fractionequationoutofthefractionline
IntheU.S.,whyisn'tturnoutandactivismproportionaltoinfluence?
Colourina5by5grid,withevolutionrules,sothatthestartinggridisthesameastheoutputgrid
Igotninety-nineproblems-sohere'sanotherone!
IsitOKtousemixedDNSservers?
Isitaredflagforacompanytohave"unlimitedpaidtimeoff"?
HowManyDaysAfterSkimCoatCanIPaint?
'Mapping'thevaluesofalisttovariable
DifferentMeaningsof"Clusters"inStatistics
Howtodetectchains(sequenceofdegree2vertices)inagraph?
PatrickandRachelgotoatennistournamentwith7othercouples
HowcanIgiveDropShadoweffecttoamaskedimageinxd
IsitallowedtocopycodeundertheUnityReference-OnlyLicense?
Whatmakesaluminumaerospacegrade?
NegativeDCwiregauge
Alternativestotannininplantbark
Modelmovingwhenusingautomaticweights
DifferentwaystocitereferencesinMathematics
WhatpreventsmefrommakingonebigestimatedFederaltaxpaymentonJan15?
Howdoyougagafish-personwithouttape?
morehotquestions
Questionfeed
SubscribetoRSS
Questionfeed
TosubscribetothisRSSfeed,copyandpastethisURLintoyourRSSreader.
Yourprivacy
Byclicking“Acceptallcookies”,youagreeStackExchangecanstorecookiesonyourdeviceanddiscloseinformationinaccordancewithourCookiePolicy.
Acceptallcookies
Customizesettings