What Is An xPU? - Semiconductor Engineering

文章推薦指數: 80 %
投票人數:10人

Almost every day there is an announcement about a new processor architecture, and it is given a three-letter acronym — TPU, IPU, NPU. Home Systems&Design LowPower-HighPerformance Manufacturing,Packaging&Materials Test,Measurement&Analytics Auto,Security&PervasiveComputing SpecialReports Videos Jobs KnowledgeCenter TechnicalPapers Home'; AI/ML/DLArchitecturesAutomotiveCommunication/DataMovementDesign&VerificationLithographyManufacturingMaterialsMemoryOptoelectronicsPackagingPower&PerformanceQuantumSecurityTest&AnalyticsTransistors Events&Webinars Events Webinars Research&Startups IndustryResearch StartupCorner MENU Home SpecialReports Systems&Design LowPower-HighPerformance Manufacturing,Packaging&Materials Test,Measurement&Analytics Auto,Security&PervasiveComputing KnowledgeCenter Videos StartupCorner Jobs TechnicalPapers Events Webinars IndustryResearch SpecialReports Home> LowPower-HighPerformance> WhatIsAnxPU? LowPower-HighPerformance WhatIsAnxPU? Almosteveryletterofthealphabethasbeenusedtodescribeaprocessorarchitecture,butunderthehoodtheyalllookverysimilar. November11th, 2021- By:BrianBailey Almosteverydaythereisanannouncementaboutanewprocessorarchitecture,anditisgivenathree-letteracronym—TPU,IPU,NPU.Butwhatreallydistinguishesthem?Aretherereallythatmanyuniqueprocessorarchitectures,orissomethingelsehappening? In2018,JohnL.HennessyandDavidA.PattersondeliveredtheTuringlectureentitled,“ANewGoldenAgeforComputerArchitecture.”WhattheyconcentratedonwastheCPUandthewaythatithadevolved,butthatisonlyasmallpartofthetotalequation.“MostofthesethingsarenotreallyaprocessorinthesenseofbeingaCPU,”saysMichaelFrank,fellowandsystemarchitectatArterisIP.“They’remorelikeaGPU,anacceleratorforaspecialworkload,andthereisquiteabitofdiversitywithinthem.Machinelearningisaclassofprocessors,andyoujustcallthemallmachinelearningaccelerators,yetthereisalargevarietyofthepartoftheprocessingtheyaccelerate.” Theessenceofaprocessorcanbeboileddowntothreethings.“Attheendoftheday,itreallydoescomebacktotheinstructionsetarchitecture(ISA),”saysManuelUhm,directorforsiliconmarketingatXilinx.“Thatdefineswhatyou’retryingtodo.ThenyouhavetheI/Oandthememory,whichsupporttheISAandwhatit’stryingtoaccomplish.It’sgoingtobeareallyinterestingtimegoingforward,becausewearegoingseealotmoreinnovationandchangethanwe’veseeninthelasttwo-orthree-plusdecades.” Manyofthenewarchitecturesarenotsingleprocessors.“Whatweareseeingisacombinationofdifferenttypesofprocessors,orprogrammableengines,thatliveinthesameSoCorinthesamesystem,”saysPierre-XavierThomas,groupdirectorfortechnicalandstrategicmarketingatCadence.“Thereisdispatchingofthesoftwaretaskstodifferenthardwareorflexibleprogrammableengines.AlloftheprocessorsmayshareacommonAPI,buttheexecutiondomainisgoingtobedifferent.Thisisreallywhereyouwillseedifferenttypesofprocessingwithdifferenttypeofcharacteristics.” Therealityisthatmuchofthenamingismarketing.“Thekeythingisthatpeopleareusingthesenamesandacronymsfortwodifferentpurposes,”saysSimonDavidmann,CEOforImperasSoftware.“Oneisforexplainingthearchitectureofaprocessor,likeSIMD(singleinstructionmultipledata).Theotherdefinestheapplicationsegmentthatitisaddressing.Soitcandefineeithertheprocessorarchitecture,orabrandnamelikeTensorProcessingUnit(TPU).Theyareputtinganametotheirheterogeneousorhomogeneousarchitecture,whichisnotasingleprocessor.” Alittlehistory Thingsweremuchsimpler40yearsago.Therewasthecentralprocessingunit(CPU),andwhilethereweremanyvariantsofit,theywereallfundamentallyvonNeumanarchitecture,Turingcompleteprocessors.Eachhaddifferentinstructionsetsthatmadethemmoreefficientforcertaintasksandtherewasplentyofdiscussionabouttherelativemeritofcomplexinstructionset(CISC)versusreducedinstructionset(RISC). TheemergenceofRISC-VbroughtalotofattentiontotheISA.“PeoplewanttounderstandtheISAbecauseitistheISAthatdefineshowoptimizedtheprocessorisforadefinedtask,”saysXilinx’sUhm.“TheycanlookattheISAandstartcountingcycles.IfoneISAhasanativeinstructionandoperatesatonegigahertz,IcancomparethattoanotherprocessorISAwherethesamefunctionmayrequiretwoinstructions,buttheprocessorrunsat1.5gigahertz.Whichonegetsmefurtherahead?Theydothemathfortheimportantfunctionality.” CPUshavebeenpackagedinmanyways,sometimesputtingIOormemoryintothesamepackageandtheywerecalledmicro-controllerunits(MCU). Whenmodemsbecamefashionable,digitalsignalprocessors(DSP)emerged,andtheyweredifferentbecausetheyusedtheHarvardarchitecture.Thatseparatedtheinstructionbusfromthedatabus.SomeofthemalsoimplementedSIMDarchitecturesthatmadedatacrunchingmoreefficient. Theseparationofinstructionsanddatawasdonetoincreasethroughputrates,eventhoughitrestrictedsomefringeprogrammingthatcouldbedone,suchasself-writingprograms.“Often,itisnotcomputethatistheboundarycondition,”saysUhm.“ItisincreasinglytheI/Oormemory.Theindustryswitchedfromjackingupcompute,tomakingsurethatthere’senoughdatatokeepthecomputecrunchingandmaintainperformance.” Whensingleprocessorsstoppedbecomingfaster,multipleprocessorswerelinkedtogether,oftensharingmemoryandmaintainingthenotionthateachprocessor,andthetotalclusterofprocessors,remainTuringcomplete.Itdidn’tmatterwhichcoreanypieceofaprogramwasexecutedon.Theresultwasthesame. Thenextmajordevelopmentwasthegraphicsprocessingunit(GPU),andthisbrokethemoldbecauseeachprocessingelementorpipelinehaditsownmemorythatwasnotaddressableoutsideoftheprocessor.Becausethememorywasfinite,itmeantthatitcouldnotperformanyarbitraryprocessingtask,onlytheonesthatcouldfitintheprovidedmemoryspace. “GPUsareverycapableprocessorsforcertaintypeoffunctions,buttheyhaveextremelylongpipelines,”notesUhm.“ThosepipelineskeeptheGPUunitscrunchingondata,butatsomepoint,ifyouhavetoflushthepipeline,that’sahugehit.Thereisasignificantamountoflatencyandnon-determinismbuiltintothesystem.” Whilemanyotheracceleratorshavebeendefined,theGPU—andlaterthegeneral-purposeGPU(GPGPU)—definedaprogrammingparadigmandsoftwarestackthatmadethemmoreapproachablethanacceleratorsofthepast.“Overtheyears,certainjobshavebeenspecialized,”saysImperas’Davidmann.“TherewastheCPUforsequentialprograms.Therewasthegraphicsprocessor,whichfocusedonmanipulationofdataforascreenandintroducedustoahighlyparallelworld.Taskswereperformedusinglotsoflittleprocessingelements.Andnowtherearemachinelearningtasks.” Whatotherconstructionrulesaretheretobebrokenthatcanexplainallofthenewarchitectures?Inthepastprocessorarrayswereoftenconnectedthroughmemory,orafixednetworktopology,suchasmeshortoroid.Whathasemergedmorerecentlyistheincorporationofanetworkonchip(NoC)thatenablesdistributed,heterogenousprocessorstocommunicateinamoreflexiblemanner.Inthefuture,theyalsomayenablecommunicationswithoutusingmemory. “Atthispoint,NoCsonlycarrydata,”saysArteris’Frank.“Inthefuture,theNoCcouldexpandintootherareaswherecommunicationbetweenacceleratorsgoesbeyonddata.Itcouldsendcommands,itcouldsendnotifications,etc.Thecommunicationneedsofanacceleratorarrayor,seaofaccelerators,mightbedifferentthanthecommunicationneedsof,forexample,CPUsorastandardSoC.Butnetworkonachipdoesnotconstrainyoutojustasubset.Youcanoptimizeandimproveperformancebysupportingspecialcommunicationneedsofaccelerators.” Implementationarchitecture Onewaythatprocessorsdifferentiateisbyoptimizingforaparticularoperatingenvironment.Forexample,softwaremayruninthecloud,butyoumayalsoexecutethesamesoftwareonatinyIoTdevice.Theimplementationarchitecturewillbeverydifferentandachievedifferentoperatingpointsintermsofperformance,power,cost,ortheabilitytooperateunderextremeconditions. “Someapplicationsweretargetedforthecloud,andnowwe’rebringingthemclosertotheedge,”saysCadence’sThomas.“Thismaybebecauseoflatencyrequirements,orforenergyorpowerdissipation,andthatwouldrequireadifferenttypeofarchitecture.Youmaywanttohaveexactlythesamesoftwarestacktobeabletoruninbothlocations.Thecloudneedstoprovideflexibilitybecauseitwillbereceivingdifferenttypesofapplicationsandhastobeabletoaggregateanumberofusers.Thisrequiresthehardwareontheservertobeapplication-specificcapable,butonesizedoesnotfitall.” MLaddsitsownrequirements.“Whenbuildingintelligentsystemswithneuralnetworksandmachinelearning,youneedtoprogramnewnetworksandmapthistohardware,usingsoftwareframeworksandacommonsoftwarestack,”addsThomas.“YoucanthenadaptthesoftwareapplicationtotherighthardwarefromaPPAstandpoint.Thisdrivestheneedfordifferenttypesofprocessingandprocessorstobeabletoaddresstheseneedsatthehardwarelayer.” Thoseneedsaredefinedbytheapplication.“Onecompanyhascreatedaprocessorforgraphoperations,”saysFrank.“Theyoptimizeandacceleratehowtofollowgraphs,anddooperationssuchasreorderingofgraphs.Thereareothersthatmostlyacceleratethebruteforcepartofmachinelearning,whichismatrix-matrixmultiplies.Memoryaccessisaparticularproblemforeacharchitecture,becausewhenyoubuildanaccelerator,themostimportantgoalistokeepitbusy.YouhavetogetasmuchdatathroughtotheALUsasitcanconsumeandproduce.” Manyoftheseapplicationshaveanumberofthingsincommon.“Theyallhavesomelocalmemory,theyhaveanetworkonchiptocommunicatethingsaround,andeachprocessor,whichexecutesasoftwarealgorithm,iscrunchingonasmallchunkofdata,”saysDavidmann.“ThosejobsarescheduledbyanOSwhichrunsonamoreconventionalCPU.” Thetrickybitforhardwaredesignersispredictingwhattasksitwillbeaskedtoperform.“Althoughyou’regoingtohavesimilartypesofoperationinsomeofthelayers,peoplearelookingatdifferentiationinthelayers,”saysThomas.“Tobeabletoprocesstheneuralnetworkrequiredseveraltypesofprocessingcapabilities.Itmeansthatyouneedtobeabletoprocessacertainwayforonepartoftheneuralnetwork,andthenanothertypeofoperationsmayberequiredtoprocessanotherlayer.Thedatamovementandtheamountofdataisalsochanginglayerafterlayer.” Thisdifferentiationcangobeyondthedatamovement.“Forgenomesequencing,youneedtodocertainprocessing,”saysFrank.“Butyoucannotaccelerateeverythingwithasingletypeofaccelerator.Youhavetobuildacompletesetofdifferentacceleratorsforthepipeline.TheCPUsbecometheguardianthatshepherdtheexecutionflow.Itsetsthingsup,doestheDMA,providesthedecision-makingprocessinbetween.Thereisawholearchitecturetasktounderstandandanalyzealgorithmsanddefinehowyouwanttooptimizetheprocessingofthem.” Partofthatprocessrequirespartitioning.“Thereisnosingleprocessortypethat’soptimizedforeverysingleprocessortask—notFPGAs,notCPUs,notGPUs,notDSPs,”saysUhm.“Wecreatedaseriesofdevicesthatcontainallofthose,butthehardpartonthecustomersideisthattheyhavetoprovidetheintelligencetodeterminewhichpartsofthisentiresystemaregoingtobetargetedattheprocessors,orattheprogrammablelogic,orattheAIengines.Everyonewantsthatauto-magicaltool,atoolthatcaninstantlydecidetoputthisontheCPU,putthatontheFPGA,putthatontheGPU.Thattooldoesnotexisttoday.” Still,therealwayswillbearolefortheCPU.“CPUsareneededtoexecutetheirregularpartoftheprogram,”saysFrank.“ThegeneralprogrammabilityoftheCPUhasitsadvantages.Itjustdoesn’tworkwellifyouhavespecializeddatastructuresormathematicaloperations.ACPUisageneralprocessor,anditisnotoptimizedforanything.It’sgoodatnothing.” Changingabstraction Inthepast,thehardware/softwareboundarywasdefinedbytheISA,andthatmemorywascontiguouslyaddressable.Whenmultipleprocessorsexisted,theyweregenerallymemory-coherent. “Coherenceisacontract,”saysFrank.“Itisacontractbetweenagentsthatsays,‘IpromiseyouthatIwillalwaysprovidethelatestdatatoyou.’Coherencebetweenequalpeersisveryimportantandwillnotgoaway.Butyoucouldimaginethatinadataflowengine,coherenceislessimportantbecauseyou’reshippingthedatathatismovingontheedge,directlyfromoneacceleratortotheother.Ifyoupartitionthedataset,coherencegetsinthewaybecauseitcostsyouextracycles.Youhavetolookthingsup.Youhavetoprovidetheupdateinformation.” Thatcallsfordifferentmemoryarchitectures.“Youhavetothinkaboutthememorystructurebecauseyouonlyhavesomuchtightlycoupledmemory,”saysUhm.“Youcouldaccessadjacentmemory,butyouquicklyrunoutofadjacenciestobeabletodothatinatimelyfashion.Thathastobecomprehendedinthedesign.Asthetoolsmature,moreofthatwillstarttobecomeunderstoodbythetools.Todayitisdonebyhumanintelligence,bybeingabletounderstandthearchitectureandapplyit.” Therealsoisaneedforhigherlevelsofabstraction.“Thereareframeworkswhereyoucanmap,orcompile,knownnetworksontotargethardware,”saysThomas.“Youhaveasetoflow-levelkernels,orAPIs,thatwillbeusedinthesoftwarestack,andtheneventuallyusedbythemapperoftheneuralnetwork.Underneath,youmayhavedifferenttypesofhardware,dependingonwhatyouwanttoachieve,dependingonyourproductdetails.Itimplementsthesamefunctionality,butnotwiththesamehardware,notonthesamePPAtradeoff.” Thatputsalotofpressureonthosecompilers.“Themainquestionishowdoyouprogramacceleratorsinthefuture?”asksFrank.“DoyouimplementhardwiredenginesthatarejuststrungtogetherlikethefirstgenerationofGPUs?Ordoyoubuildlittleprogrammableenginesthathavetheirowninstructionset?Andnowyouhavetogoandprogramthesethingsindividuallyandconnecteachoftheseengines,executingtasks,withadataflow.Oneprocessorhassomesubsetofthetotalinstructionset,anotheronehasadifferentsubset,andtheywillallsharesomeoverlappingpartforthecontrolflow.Youmighthavesomethathaveslightlydifferentaccelerationcapabilities.Thecompilers,orthelibrariesthatknowaboutit,mapaccordingly.” Conclusion Thearchitectureofprocessorsisnotchanging.Theystillabidebythesamechoicesthathaveexistedforthepast40years.Whatischangingisthewayinwhichchipsarebeingconstructed.Theynowcontainlargenumbersofheterogeneousprocessorsthathavememoryandcommunicationsoptimizedforasubsetofapplicationtasks.Eachchiphasmadedifferentchoicesabouttheprocessorcapabilitiesandwhattheyareoptimizedfor,abouttherequireddatathroughput,andaboutthedataflowsthattypicallywillbeseen. Everyhardwareproviderwantstodifferentiateitschipfromtheothers,butthat’saloteasiertodothatbybrandingthanbytalkingaboutthetechnicaldetailsoftheinternals.Andsotheygiveitanameandcallitthefirst,thefastest,thelargest,andtieittoaparticulartypeofapplicationproblem.Thethreeletteracronymshavebecomeapplicationtasknames,buttheydonotdefinethehardwarearchitecture. Related ChallengesForNewAIProcessorArchitectures GettinganAIseatinthedatacenterisattractingalotofinvestment,buttherearehugeheadwinds. TenLessonsFromThreeGenerationsShapedGoogle’sTPUv4i EvolutionofGoogle’sTPUv4i NewArchitectures,MuchFasterChips Massiveinnovationtodriveordersofmagnitudeimprovementsinperformance. ImprovingMedicalImageProcessingWithAI Faster,smarterimagingopensdoorstoeverythingfrom4Dmodelingandhigherresolutionwithlessnoise. Tags:architecturesArterisIPCadenceCadenceDesignSystemsCPUDSPFPGAGPUHarvardarchitectureImperasSoftwareIPUMCUnetworkonchipNPUprocessorsSIMDTPUTuringcompleteXilinx BrianBailey  (allposts) BrianBaileyisTechnologyEditor/EDAforSemiconductorEngineering. LeaveaReplyCancelreplyComment*Name*(Note:Thisnamewillbedisplayedpublicly) Email*(Thiswillnotbedisplayedpublicly) Δ KnowledgeCentersBlogs DigitalSignalProcessor(DSP) PublishedonNovember13,2019 CentralProcessingUnit(CPU) PublishedonOctober18,2019 Processors PublishedonJuly25,2019 GraphicsProcessingUnit(GPU) PublishedonJuly3,2019 Architectures PublishedonJuly25,2017 TechnicalPapers BenchmarkingMemory-CentricComputingSystems:AnalysisofRealProcessing-in-MemoryHardwareMarch10,2022byTechnicalPaperLinkQubiC:AnOpen-SourceFPGA-BasedControlandMeasurementSystemforSuperconductingQuantumInformationProcessorsMarch9,2022byTechnicalPaperLinkPinpointingtheDominantComponentofContactResistancetoAtomicallyThinSemiconductorsMarch8,2022byTechnicalPaperLinkSparseP:TowardsEfficientSparseMatrixVectorMultiplicationonRealProcessing-In-MemorySystemsMarch8,2022byTechnicalPaperLinkZero-BiasPower-DetectorCircuitsbasedonMoS2Field-EffectTransistorsonWafer-ScaleFlexibleSubstratesMarch8,2022byTechnicalPaperLink   TrendingArticles WhyRISC-VIsSucceeding InterestinthisparticularISAisexpanding,butthegrowthofotheropen-sourcehardwareislesscertain. byBrianBailey TransistorsReachTippingPointAt3nm Nanosheetsarelikeliestoptionthroughoutthisdecade,withCFETsandotherexoticstructurespossibleafterthat. byMarkLaPedus MachineLearningShowingUpAsSiliconIP Itwon’treplaceMLchips,butitcouldbroadenthemarket. byBryonMoyer TechnologyAdvances,ShortagesSeenForWireBonders Oldtechstillaccountsfor75%ofallpackages,andlikelywillcontinuetoplayimportantroleasequipmentimproves. byMarkLaPedus Silicon-basedPowerSemisFaceChallenges SiCandGaNaregainingtraction,butsiliconismakingprogress,too. byMarkLaPedus KnowledgeCentersEntities,peopleandtechnologiesexplored LearnMore RelatedArticles AMinimalRISC-V IsthereroomforanevensmallerversionofaRISC-Vprocessorthatcouldreplace8-bitmicrocontrollers? byBrianBailey IsProgrammableOverheadWorthTheCost? Howmuchdowepayforasystemtobeprogrammable?Itdependsuponwhoyouask. byBrianBailey RevvingUpSiCAndGaN Technologiesarebeingdesignedintomoresystemsasdefectivitydropsandreliabilityincreases. byAnnStefforaMutschler SOT-MRAMToChallengeSRAM Spin-orbittorquememoryaddsenduranceandfasterwritespeeds,butdisplacingexistingmemoriesisstillnoteasy. byBryonMoyer ImprovingEnergyAndPowerEfficiencyInTheDataCenter Optimizingenergyandpowerefficiencyinserverchipsandsoftwareisamultifacetedchallengewithmanymovingparts. byAnnStefforaMutschler ImprovingPPAInComplexDesignsWithAI Researchshowssignificantimprovementintimetomarketandoptimizationofkeymetrics. byJohnKoon InnovationsInSensorTechnology Bettermanagementofdata,increasedaccuracy,andlowerpowerapproachestopthelist. byJohnKoon WhyDataCenterPowerWillNeverComeDown Efficiencyisimprovingsignificantly,buttheamountofdataisgrowingfaster. byBryonMoyer Sponsors Advertisewithus Advertisewithus Advertisewithus NewsletterSignup PopularTags2.5D 5G 7nm AI ANSYS Apple AppliedMaterials ARM Atrenta automotive business Cadence EDA eSilicon EUV finFETs GlobalFoundries IBM IMEC Intel IoT IP LamResearch machinelearning memory Mentor MentorGraphics Moore'sLaw Nvidia NXP OneSpinSolutions Qualcomm Rambus Samsung security SEMI Siemens SiemensEDA software Sonics Synopsys TSMC UMC verification Xilinx RecentCommentsSteveonConstraintsOnTheElectricityGridwilliam(Bill)JAtkinsononTechnicalPapers:Organized,Timely,AndRelevantAndydengonWhyBanksShouldBeMoreWorriedAboutSecurityPrinceJonUnderstandingMemoryEfiRotemonChallengesGrowForFindingChipDefectsSAmerDiabonABreakthroughInSiliconBring-UpBrianBaileyonWhyRISC-VIsSucceedingJasononTestEngineersInVeryShortSupplysnedunurionWillSteeringWheelsEverDisappear?RupertBainesonWhichProcessorIsBest?LawrenceonWhyRISC-VIsSucceedingdevdutton2DSemiconductorsMakeProgress,ButSlowlysolidproesonHowToSolveAutomotiveElectricalDesignChallengesToGetToMarketFasterPaulLueonWhyRISC-VIsSucceedingSiddharthaNathonDoesEDASellFear?DeanFreedonDoesEDASellFear?HarryChenonDoesEDASellFear?EdgarAnckeronWhy450mmwafers?DaleonAutomotiveFunctionalSafetyComplianceInEDAToolsAndIPKvsonWhyRISC-VIsSucceedingRajeevVadjikaronTransistorsReachTippingPointAt3nmMarkLaPedusonNext-Gen3DChip/PackagingRaceBeginsArnaudPHELIPOTonWhatCausesSemiconductorAging?TanjBennettonThermalManagementImplicationsForHeterogeneousIntegratedPackagingMarkLaPedusonTechnologyAdvances,ShortagesSeenForWireBondersJanHoppeonWhatCausesSemiconductorAging?RayBarrettonUnknownsDrivingUpTheCostOfAutoICReliabilityEdSperlingonWhyDataCenterPowerWillNeverComeDownMartinBuehringonUnknownsDrivingUpTheCostOfAutoICReliabilityConradChompffonWhyDataCenterPowerWillNeverComeDownJohnR.ThomeonPreparingFor3D-ICsAlexVoronelonTechnologyAdvances,ShortagesSeenForWireBondersCraigFranklinonFutureChallengesForAdvancedPackagingMy2centsonSpreadsheets:StillValuable,ButMoreLimitedLuonWhatCausesSemiconductorAging?HabibHichrionWhyDataCenterPowerWillNeverComeDownDavidLearyonWhatCausesSemiconductorAging?BesselFunconWhatCausesSemiconductorAging?AllenRasafaronCriticalMoves:AdvancedLogicDevicesAndCISBenefitFromApplicationsUsingIRCDMetrologyJacekTyminskionPowerOptimization:What’sNext?AndrewonAMinimalRISC-VNicolasBarononNext-Gen3DChip/PackagingRaceBeginsMarkDLaPedusonWeekInReview:Manufacturing,TestSantoshPrajapationDataSecurityChallengesInAutomotivedevduttonMLFocusShiftingTowardSoftwareAllenRasafaronWeekInReview:Manufacturing,TestMarkLaPedusonNext-Gen3DChip/PackagingRaceBeginsMarkLaPedusonIndustryPushesForFabToolSecurityStandardsPaulLueonNext-Gen3DChip/PackagingRaceBeginsBrianBaileyonAMinimalRISC-VBrianBaileyonAMinimalRISC-VdevduttonNext-Gen3DChip/PackagingRaceBeginsVikramChouguleonFromSandToWafersTheodoreWilsononEthicalCoverageNIRVANAonWaitingForChipletStandardsRajeevVadjikaronPhotomaskChallengesAt3nmAndBeyondMarkLaPedusonChasingAfterCarbonNanotubeFETsMarkLaPedusonEndInSightForChipShortages?MarkLaPeduson200mmShortagesMayPersistForYearsReynoldFunkonWillSteeringWheelsEverDisappear?SaumyaThackeronTheHighButOftenUnnecessaryCostOfCoherenceLarryDannenbergon200mmShortagesMayPersistForYearsArnieonEndInSightForChipShortages?S.MeirowskyonAMinimalRISC-VWillonAMinimalRISC-VTMS-EEonAMinimalRISC-VAllenRasafaronManufacturingBits:Jan.3BARRYDENNISonChasingAfterCarbonNanotubeFETsJohnSanthoffonPiecingTogetherChipletsTinaFrancisonBuildingMultipurposeSystemsWithDynamicFunctionExchangeAllenRasafaronPreventingFailuresBeforeTheyOccurTomSomyakonInspectingAndTestingGaNPowerSemisDr.MJZarabi,PhD.onManufacturingBits:Jan.10JanHoppeonManufacturingBits:Jan.10KhachikSahakyan(GrovfInc.)onTheHighButOftenUnnecessaryCostOfCoherenceHugoPristauzonNextStepsForPanel-LevelPackagingAllenRasafaronManufacturingBits:Dec.28BernardonTheHighButOftenUnnecessaryCostOfCoherenceEranWeisonReliabilityConcernsShiftLeftIntoChipDesignJnanadarshanNayakonTooMuchFabAndTestData,LowUtilizationAllenRasafaronBigPaybackForCombiningDifferentTypesOfFabDatareyhanonAdaptiveNN-BasedRootCauseAnalysisinVolumeDiagnosisforYieldImprovementKurtShuleronProductLifecycleManagementForSemiconductorsOnriJayBenallyonGearingUpForHigh-NAEUVAnsweringonInsideIntel’sAmbitiousRoadmapDr.DevGuptaonChinaAcceleratesFoundry,PowerSemiEffortsJanHoppeonChinaAcceleratesFoundry,PowerSemiEffortsBorisPetrovonChinaAcceleratesFoundry,PowerSemiEffortsLullabyonChinaAcceleratesFoundry,PowerSemiEffortsRafaelRoquesonApple’sFirstGaNChargerMarkDLaPedusonWhat’sNextForTransistorsAndChipletsMarkDLaPedusonWhat’sNextForTransistorsAndChipletsAhsanIslamonCopingWithParallelTestSite-to-SiteVariationWesNeumeieronChipmakersGettingSeriousAboutIntegratedPhotonicsguestonWhat’sNextForTransistorsAndChipletsNewtononWhat’sAfterFinFETs?petegasperinionElasticityWithoutCompromiseJacquelineArsivaudonChangingServerArchitecturesInTheDataCenterFrederikGrønSchackonNeuromorphicelectronicsbasedoncopyingandpastingthebrainJanHoppeonMoreErrors,MoreCorrectioninMemoriesOlivierSentieysonHigh-LevelSynthesisForRISC-VSimononHigh-LevelSynthesisForRISC-VTomKunichonFunctionalSafetyAcrossAnalogAndDigitalDomainsMikeDonTheBenefitsOfAntifuseOTPDanielPaneonDealingWithMarketShiftsTanjBonWhat’sNextForTransistorsAndChipletsYasunoriYamaguchionGrowingChallengesWithWaferBumpInspectionAllenRasafaronGearingUpForHigh-NAEUVJanHoppeonWhat’sNextForTransistorsAndChipletsCraigFranklinonFan-OutAndPackagingChallengesSteveTonSixThingsWeMightNeedForPervasiveComputingASAonPCBAndICTechnologiesMeetInTheMiddleAllenRasafaronEUV’sUncertainFutureAt3nmAndBelowDavidLearyonHowChipsAgeAnandChamarthyonGrapheneandtwo-dimensionalmaterialsforsilicontechnologyAbbasonTheVerificationMindsetPeterAJvanderMadeonHowMuchPowerWillAIChipsUse?MaxTurneronWillAutomotiveEthernetWin?SUHAIMISELIMANonWeekInReview:Manufacturing,TestEriconAdvantagesOfLPDDR5:ANewClockingScheme WeekInReview:Manufacturing,TestMarkLaPedusWeekInReview:Design,LowPowerJesseAllen About Aboutus Contactus AdvertisingonSemiEng NewsletterSignUp Navigation Homepage SpecialReports Systems&Design LowPower-HighPerf Manufacturing,Packaging&Materials Test,Measurement&Analytics Auto,Security&PervasiveComputing Videos Jobs TechnicalPapers Events Webinars KnowledgeCenters StartupCorner Bus&MarketingStrategies ConnectWithUs Facebook Twitter@semiEngineering LinkedIn YouTube Copyright©2013-2022SMG  |  TermsofService  |  PrivacyPolicy Thissiteusescookies.Bycontinuingtouseourwebsite,youconsenttoourCookiesPolicyACCEPTManageconsent Close PrivacyOverview Thiswebsiteusescookiestoimproveyourexperiencewhileyounavigatethroughthewebsite.Thecookiesthatarecategorizedasnecessaryarestoredonyourbrowserastheyareessentialfortheworkingofbasicfunctionalitiesofthewebsite.Wealsousethird-partycookiesthathelpusanalyzeandunderstandhowyouusethiswebsite.Wedonotsellanypersonalinformation. Bycontinuingtouseourwebsite,youconsenttoourPrivacyPolicy.Ifyouaccessotherwebsitesusingthelinksprovided,pleasebeawaretheymayhavetheirownprivacypolicies,andwedonotacceptanyresponsibilityorliabilityforthesepoliciesorforanypersonaldatawhichmaybecollectedthroughthesesites.Pleasecheckthesepoliciesbeforeyousubmitanypersonalinformationtothesesites. Necessary Necessary AlwaysEnabled Necessarycookiesareabsolutelyessentialforthewebsitetofunctionproperly.Thiscategoryonlyincludescookiesthatensuresbasicfunctionalitiesandsecurityfeaturesofthewebsite.Thesecookiesdonotstoreanypersonalinformation. Non-necessary Non-necessary Anycookiesthatmaynotbeparticularlynecessaryforthewebsitetofunctionandisusedspecificallytocollectuserpersonaldataviaanalytics,ads,otherembeddedcontentsaretermedasnon-necessarycookies.Itismandatorytoprocureuserconsentpriortorunningthesecookiesonyourwebsite. SAVE&ACCEPT



請為這篇文章評分?