核融合- 維基百科,自由的百科全書 - Wikipedia

文章推薦指數: 80 %
投票人數:10人

核融合(中國大陸、香港稱為核聚變),又稱融合反應,是指將兩個較輕的核結合而形成一個較重的核和一個極輕的核(或粒子)的一種核反應形式。

核融合 原子核的聚變反應 語言 監視 編輯 此條目需要精通或熟悉相關主題的編者參與及協助編輯。

(2013年7月29日)請邀請適合的人士改善本條目。

更多的細節與詳情請參見討論頁。

核融合(中國大陸、香港稱為核聚變),又稱融合反應,是指將兩個較輕的核結合而形成一個較重的核和一個極輕的核(或粒子)的一種核反應形式。

在此過程中,物質沒有守恆,因為有一部分正在聚變的原子核的物質被轉化為光子(能量)。

核融合是給活躍的或「主序的」恆星提供能量的過程。

太陽是主序星,透過原子核的核融合產生能量,把氫原子聚變成氦原子。

在它的核心,太陽發生以每秒鐘6.2億噸氫的核融合。

兩個較輕的核在融合過程中產生質量耗損而釋放出巨大的能量,兩個輕核在發生聚變時雖然因它們都帶正電荷而彼此排斥,然而兩個能量足夠高的核迎面相遇,它們就能相當緊密地聚集在一起,以致核力能夠克服庫侖斥力而發生核反應,這個反應叫做核融合。

舉例:兩個質量小的原子,比方說兩個氘原子,在一定條件下(如超高溫和高壓),會發生原子核互相聚合作用,生成中子和氦-3,並伴隨著巨大的能量釋放。

原子核中蘊藏巨大的能量。

根據質能方程式E=mc2,原子核之淨質量變化(反應物與生成物之質量差)造成能量的釋放。

如果是由重的原子核變化為輕的原子核,稱為核分裂,如原子彈爆炸;如果是由較輕的原子核變化為較重的原子核,稱為核融合。

一般來說,這種核反應會終止於鐵,因為其原子核最為穩定。

1920年,亞瑟·愛丁頓提出氫氦融合可能是恆星能量的主要來源。

在拉塞福的核轉換實驗基礎上,馬克·奧利芬特於1932年完成了氫同位素的實驗室聚變。

1930年代,漢斯·貝特提出了恆星核融合主循環的理論。

1940年代初,作為曼哈頓計劃的一部分,用於軍事目的的核融合開始被研究。

1951年,在核試驗中完成了核融合。

1952年11月1日,在常春藤麥克氫彈試驗中首次進行了大規模核融合。

最早的人工核融合技術在氫彈上得到體現。

1950年代以來,人類開始研究用於民用目的的受控熱核融合。

目次 1基本原理 2發生條件 3優點 4研究歷史及未來研究方向 5參見 6參考文獻 7外部連結 7.1組織 基本原理編輯 核融合將諸如氫原子核一類的較輕的原子核結合形成較重的原子核。

原子核帶正電,故庫侖力會阻礙原子核的結合。

克服庫侖勢壘需要大量的能量。

輕核所帶的電荷少,因此它們聚變時需要克服的勢壘越小,釋放出的能量就越多。

隨著原子核質量的增加到一個臨界點時,融合反應所需克服的位能大於反應放出的能量,即沒有淨能量產生。

這一臨界點是鎳-62。

氘核與氚核是核融合的最佳燃料。

它們都是氫原子核的重同位素。

由於中子與質子比相對較高,它們的勢壘也就較小。

電中性的中子透過核力使得原子核中的核子緊密地結合在一起。

氚核的中子與質子比(2個中子,1個質子)是穩定原子核中最高的。

增加質子或減少中子都會使得克服勢壘所需的能量變多。

一般條件下氘核與氚核的混合態不會產生持續的核融合。

由於核子之間的距離小於10fm才會有核力的作用,因此核子必須靠外部能量聚合在一起。

就算在溫度極高,密度極大的太陽中心,平均每個質子要等待數十億年才能參與一次聚變。

[1]要使聚變能夠實際應用,原子核利用率必須大幅提升:溫度提升到10的8次方K,或施加極大的壓力。

實現自持融合反應並獲得能量增益的關於密度和壓力的必要條件就是慣性局限融合。

這一準則自1950年代氫彈爆炸成功而聞名,而在地球上實現慣性局限融合十分困難。

發生條件編輯 如果要進行核融合反應,首先就必須提高物質的溫度,使原子核和電子分開,處於這種狀態的物質稱為「電漿」(plasma)。

顧名思義,核力是一種非常強大的力量,而其力量所及的範圍僅止於10−10~10−13米左右,當質子和中子互相接近至此範圍時,核力就會發揮作用,因而發生核融合反應。

但由於原子核帶正電,彼此間會互相排斥,所以很難使其彼此互相接近。

若要克服其相斥的力量,就必須適當地控制電漿的溫度、密度和封閉時間﹝維持時間﹞,此三項條件缺一不可。

由於提高物質的溫度可以使原子核劇烈轉動,因此溫度升高,密度變大,封閉的時間越長,彼此接近的機會越大。

由於電漿很快就會飛散開來,所以必須先將其封閉。

用來使電漿封閉的方法有許多種,太陽內部是利用巨大重力使電漿封閉,而在地球上則必須採取別的方法,磁場的利用便是其中一種。

當電漿帶電時,電荷被捲在磁力線上,因此只要製造出磁場,就能夠將電漿封閉,使它們懸浮在真空中。

優點編輯 相較於核分裂發電,核融合產生的核廢料半衰期極短(低管理成本、核洩漏時總危害較低、最多只有一公里內需要撤退)、安全性也更高(不維持對核的約束便會停止反應)。

如氘和氚之核融合反應,其原料可直接取自海水,來源幾乎取之不盡,因而是比較理想的能源取得方式。

 D型環的托卡馬克裝置是最有希望達成的受控融合設計 核融合也是一種中子源,藉此可以觸發核分裂。

利用中子源來觸發核分裂反應稱為次臨界核分裂,次臨界核分裂不但安全性接近核融合,且技術難度較核融合發電低(若是把核融合來當中子源觸發核分裂發電,技術需求也會比僅使用核融合的能量發電低)[2],還可以處理核分裂發電造成的核廢料及過多的原子彈、讓這些核廢料的半衰期由數萬年縮短為數百年。

研究歷史及未來研究方向編輯 核融合程序於1932年由澳洲科學家馬克·奧利芬特所發現。

隨後於1950年代早期,他在澳洲國立大學成立至今依舊活躍的電漿核融合研究機構(AustralianPlasmaFusionResearchFacility)。

目前人類已經可以實現不受控制的核融合,如氫彈的爆炸;也可以觸發可控制核融合,只是輸入的能量大於輸出、或發生時間極短。

但是要想能量可被人類有效利用,必須能夠合理的控制核融合的速度和規模,實現持續、平穩的能量輸出;而觸發核融合反應必須消耗能量(約1億度),因此人工核融合所產生的能量與觸發核融合的能量要到達一定的比例才能有經濟效應。

科學家正努力研究如何控制核融合,但是現在看來還有很長的路要走。

目前主要的幾種可控制核融合方式:雷射約束(慣性約束)核融合、磁約束核融合(托克馬克)。

2019年11月,美國洛斯阿拉莫斯國家實驗室正在進行一項電漿線性實驗(PLX),旨在結合目前兩種核融合方式之所長。

2005年,部份科學家相信已經成功做出小型的核融合[3],並且得到初步驗證[4]。

首個實驗核融合發電站將選址法國[5]。

根據2014年2月12日英國科學期刊《自然》電子版,美國能源部所屬國家研究機構勞倫斯利福莫耳國家實驗室(英語:LawrenceLivermoreNationalLaboratory)的研究團隊首次確認,使用高功率雷射進行的核融合實驗,從燃料所釋放出來的能量,超出投入的能量。

[6]2014年10月,洛克希德·馬丁宣布發明小型核融合反應爐,100兆瓦特反應爐縮小至7x10英呎大小,於1年之內能進行測試,10年內能正式運轉[7]。

大部分科學家對此聲明表示懷疑,其小型反應爐與世上任何反應爐構造都不同。

目前正在建設世界上最大的實驗性托卡馬克反應爐為法國南部的國際熱核融合實驗反應爐,專家估計它將在2025年12月進行第一階段測試,若實驗成功,將協助第一批核融合發電廠在2040年前投入運行,營運成本和核分裂反應爐相當。

2018年11月,中國科學院電漿物理研究所宣佈在合肥綜合性國家科學中心的EAST磁約束核融合實驗裝置實現一億度電漿運行。

[8]2021年5月,中國科學院合肥物質科學研究院有「人造太陽」之稱的全超導托克馬克核融合實驗裝置(EAST)創造新的世界紀錄,成功實現可重複的1.2億攝氏度101秒和1.6億攝氏度20秒電漿運行,將1億攝氏度20秒的原紀錄延長了5倍。

[9]   氘-氚(D-T)的核融合反應產生氦(He)與中子(n),期間釋放出的核能,在核融合發電中難度最低,是目前考慮中的未來主要能源。

  質子-質子鏈反應是太陽和比太陽輕的恆星產生能量的主要方式。

  碳氮氧循環是比太陽重的恆星主要產能方式。

 核融合反應速度會一直與溫度一起上升,直到最大反應速率溫度後、逐漸下降。

DT反應速度峰值的溫度是最低的(約70 keV或八億度k),,而且高於另外的反應。

核融合發電反應的比較[10][11][12][13][14] 反應物 產物 Q n/MeV 第一代核融合發電燃料 21H+21H(D-D) → 32He+10 3.268MeV 0.306 21H+21H(D-D) → 31H+11 4.032MeV 0 21H+31H(D-T) → 42He+10 17.571MeV 0.057 第二代核融合燃料 21H+32He(D-3He) → 42He+11 18.354MeV 0 第三代核融合燃料 32He+32He → 42He+211 12.86MeV 0 115B+11 → 342He 8.68MeV 0 氘(D)融合總反應(前四行反應的總和) 6D → 2(4He+n+p) 43.225MeV 0.046 目前最常用的核燃料 235U+n → 2核分裂產物+2.5n ~200MeV 0.001 燃料中的氘是穩定同位素、可以由海水獲得,氚的半衰期短、但可以用中子撞擊鋰-6來獲得[15] ,氦-3可以是清潔核燃料,但地球的存量很少,必須要到月球或木星上透過宇宙採礦獲取。

D-T反應及D-D反應都會產生中子,而這會讓核融合設施帶有放射線,但這些核廢料比核分裂發電造成的好處理多了;而反應溫度更高的D-3He反應本身沒有產生中子,但因為反應物包含D,因此會附帶D-D反應、而產生中子;純3He的反應則只會產生質子、質子可以用電場處理、而且還可以用來直接發電(類似燃料電池的方法),115B+11反應的原料更好取得,但第三代核融合的技術難度又更高一截。

參見編輯  核技術主題  能源主題  物理學主題 冷核融合 碳氮氧循環 慣性靜電約束 聚變能 核融合火箭 氦-3 國際熱核融合實驗反應爐(ITER) 歐洲聯合環狀反應爐(JET) 核分裂 核衰變 聚變反應 核能 常溫核融合 核反應爐 核爆炸 恆星核融合 國際原子能機構(IAEA) 國家點火設施(NIF) 先進超導托克馬克實驗裝置(EAST) 核合成 中子源 元素週期表 質子﹣質子鏈反應 氫彈 3氦過程 參考文獻編輯 ^FusEdWeb|FusionEducation.Fusedweb.llnl.gov.[2013-10-11].(原始內容存檔於2013-05-10).  ^央視-中國人造太陽夢 ^RobertNigmatulin.Nano-scalethermonuclearfusioninimplodingvaporbubbles.ScienceDirect.2005年2月16日[2010年2月6日].  ^EmilVenere.Purduefindingssupportearliernuclearfusionexperiments.PurdueUniversity.2005年7月12日[2010年2月6日](英語).  ^Francewinsbidforworldfirstfusionplant.Xinhua.net.2005年6月28日[2010年2月6日](英語).  ^美首次實證雷射核融合放出超量能量.新頭殼newtalk.2014-02-13.  ^Lockheedsaysmakesbreakthroughonfusionenergyproject,Reuters,15October2014,AndreaShalal ^中科院合肥综合性国家科学中心EAST装置实现1亿度等离子体运行.中國科學院電漿物理研究所.2018-11-12.  ^中国“人造太阳”创亿度百秒世界纪录.新華網.2021-05-28.  ^InertialElectrostaticConfinementFusion.[2007-05-06].  ^NuclearFissionandFusion.[2007-05-06].(原始內容存檔於2007-04-04).  ^TheFusionReaction.[2007-05-06].  ^JohnSantarius.AStrategyforD–3HeDevelopment(PDF).June2006[2007-05-06].  ^NuclearReactions.[2007-05-06].  ^Hanaor,D.A.H.;Kolb,M.H.H.;Gan,Y.;Kamlah,M.;Knitter,R.Solutionbasedsynthesisofmixed-phasematerialsintheLi2TiO3-Li4SiO4system.JournalofNuclearMaterials.2014,456:151–161.doi:10.1016/j.jnucmat.2014.09.028.  外部連結編輯 維基共享資源中相關的多媒體資源:核融合NuclearFiles.org—Arepositoryofdocumentsrelatedtonuclearpower. AnnotatedbibliographyfornuclearfusionfromtheAlsosDigitalLibraryforNuclearIssues NRLFusionFormulary組織編輯 TokamakEnergy(MiltonPark,Abingdon)website FusionforEnergywebsite ITER(InternationalThermonuclearExperimentalReactor)website CCFE(CulhamCentreforFusionEnergy)website JET(JointEuropeanTorus)website NakaFusionInstituteatJAEA(JapanAtomicEnergyAgency)website 取自「https://zh.wikipedia.org/w/index.php?title=核聚变&oldid=68777416」



請為這篇文章評分?